An Efficient Hyperspectral Image Classification Method Using Deep Fusion of 3-D Discrete Wavelet Transform and CNN
For the predominant classification performance, the convolutional neural network (CNN) is becoming quite popular in hyperspectral image (HSI) classification. However, quite a few parameters must be updated in the training procedure. The overfitting problem is also exacerbated by HSI's high dime...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Xu, Jingran Zhao, Jiankang Fu, Yuchao |
description | For the predominant classification performance, the convolutional neural network (CNN) is becoming quite popular in hyperspectral image (HSI) classification. However, quite a few parameters must be updated in the training procedure. The overfitting problem is also exacerbated by HSI's high dimensionality and limited training samples. Therefore, an end-to-end model DWTCNN that deeply integrates 3-D discrete wavelet transform (DWT) and CNN is proposed. The 3-D DWT is introduced for the intrinsic feature collection in multi-resolution, and the 3-D DWT modulated kernel with predefined parameters will not increase the trainable parameters of DWTCNN. The impact of 3D-DWT at different scale levels on classification performance is also studied. The amalgamation of 3-D DWT reduces the feature extraction burden of 3-D CNN while increasing the feature extraction capacity of the network. With a compact and light structure, our model is easier to train with less memory and limited training samples. Compared with other methods, our model has a considerable advantage in computational efficiency while maintaining good classification accuracy and clear physical meaning interpretability. Experimental results on three public datasets also demonstrate the superiority of our approach in the training process and classification performance. |
doi_str_mv | 10.1109/LGRS.2023.3287188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10155143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155143</ieee_id><sourcerecordid>2830417300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b78f7c5f89a6fd96b6f05e5064c7e57842f77e65ad73c1853753ee5b65275f5e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1N5vJbo6l31AraIvewnYzW1PSJO5uhf57E9qDp3lhnncGniB4ZHTAGE1flrP3j0FEIz7gkRRMyqugxwBkSEGw6y7HEEIqv26DO-f2lEaxlKIX2GFFJsYUusDKk_mpQesa1N6qkiwOaodkVCrnipZQvqgr8or-u87JxhXVjowRGzI9um5RG8LDMRkXTlv0SD7VL5boydqqypnaHoiqcjJare6DG6NKhw-X2Q8208l6NA-Xb7PFaLgMdZTGPtwKaYQGI1OVmDxNtomhgECTWAsEIePICIEJqFxwzSRwARwRtglEAgwg7wfP57uNrX-O6Hy2r4-2al9mkeQ0ZoJT2lLsTGlbO2fRZI0tDsqeMkazTm3Wqc06tdlFbdt5OncKRPzHt8JZzPkfyqh0sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417300</pqid></control><display><type>article</type><title>An Efficient Hyperspectral Image Classification Method Using Deep Fusion of 3-D Discrete Wavelet Transform and CNN</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Jingran ; Zhao, Jiankang ; Fu, Yuchao</creator><creatorcontrib>Xu, Jingran ; Zhao, Jiankang ; Fu, Yuchao</creatorcontrib><description>For the predominant classification performance, the convolutional neural network (CNN) is becoming quite popular in hyperspectral image (HSI) classification. However, quite a few parameters must be updated in the training procedure. The overfitting problem is also exacerbated by HSI's high dimensionality and limited training samples. Therefore, an end-to-end model DWTCNN that deeply integrates 3-D discrete wavelet transform (DWT) and CNN is proposed. The 3-D DWT is introduced for the intrinsic feature collection in multi-resolution, and the 3-D DWT modulated kernel with predefined parameters will not increase the trainable parameters of DWTCNN. The impact of 3D-DWT at different scale levels on classification performance is also studied. The amalgamation of 3-D DWT reduces the feature extraction burden of 3-D CNN while increasing the feature extraction capacity of the network. With a compact and light structure, our model is easier to train with less memory and limited training samples. Compared with other methods, our model has a considerable advantage in computational efficiency while maintaining good classification accuracy and clear physical meaning interpretability. Experimental results on three public datasets also demonstrate the superiority of our approach in the training process and classification performance.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3287188</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; Classification ; convolutional neural network (CNN) ; Convolutional neural networks ; Discrete Wavelet Transform ; discrete wavelet transform(DWT) ; Discrete wavelet transforms ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Kernel ; Mathematical models ; Neural networks ; Parameters ; Solid modeling ; Training ; Wavelet transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b78f7c5f89a6fd96b6f05e5064c7e57842f77e65ad73c1853753ee5b65275f5e3</citedby><cites>FETCH-LOGICAL-c294t-b78f7c5f89a6fd96b6f05e5064c7e57842f77e65ad73c1853753ee5b65275f5e3</cites><orcidid>0000-0002-2187-9611 ; 0000-0001-9914-233X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10155143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Jingran</creatorcontrib><creatorcontrib>Zhao, Jiankang</creatorcontrib><creatorcontrib>Fu, Yuchao</creatorcontrib><title>An Efficient Hyperspectral Image Classification Method Using Deep Fusion of 3-D Discrete Wavelet Transform and CNN</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>For the predominant classification performance, the convolutional neural network (CNN) is becoming quite popular in hyperspectral image (HSI) classification. However, quite a few parameters must be updated in the training procedure. The overfitting problem is also exacerbated by HSI's high dimensionality and limited training samples. Therefore, an end-to-end model DWTCNN that deeply integrates 3-D discrete wavelet transform (DWT) and CNN is proposed. The 3-D DWT is introduced for the intrinsic feature collection in multi-resolution, and the 3-D DWT modulated kernel with predefined parameters will not increase the trainable parameters of DWTCNN. The impact of 3D-DWT at different scale levels on classification performance is also studied. The amalgamation of 3-D DWT reduces the feature extraction burden of 3-D CNN while increasing the feature extraction capacity of the network. With a compact and light structure, our model is easier to train with less memory and limited training samples. Compared with other methods, our model has a considerable advantage in computational efficiency while maintaining good classification accuracy and clear physical meaning interpretability. Experimental results on three public datasets also demonstrate the superiority of our approach in the training process and classification performance.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>Classification</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>Discrete Wavelet Transform</subject><subject>discrete wavelet transform(DWT)</subject><subject>Discrete wavelet transforms</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Kernel</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Solid modeling</subject><subject>Training</subject><subject>Wavelet transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1N5vJbo6l31AraIvewnYzW1PSJO5uhf57E9qDp3lhnncGniB4ZHTAGE1flrP3j0FEIz7gkRRMyqugxwBkSEGw6y7HEEIqv26DO-f2lEaxlKIX2GFFJsYUusDKk_mpQesa1N6qkiwOaodkVCrnipZQvqgr8or-u87JxhXVjowRGzI9um5RG8LDMRkXTlv0SD7VL5boydqqypnaHoiqcjJare6DG6NKhw-X2Q8208l6NA-Xb7PFaLgMdZTGPtwKaYQGI1OVmDxNtomhgECTWAsEIePICIEJqFxwzSRwARwRtglEAgwg7wfP57uNrX-O6Hy2r4-2al9mkeQ0ZoJT2lLsTGlbO2fRZI0tDsqeMkazTm3Wqc06tdlFbdt5OncKRPzHt8JZzPkfyqh0sA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xu, Jingran</creator><creator>Zhao, Jiankang</creator><creator>Fu, Yuchao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2187-9611</orcidid><orcidid>https://orcid.org/0000-0001-9914-233X</orcidid></search><sort><creationdate>20230101</creationdate><title>An Efficient Hyperspectral Image Classification Method Using Deep Fusion of 3-D Discrete Wavelet Transform and CNN</title><author>Xu, Jingran ; Zhao, Jiankang ; Fu, Yuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b78f7c5f89a6fd96b6f05e5064c7e57842f77e65ad73c1853753ee5b65275f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>Classification</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>Discrete Wavelet Transform</topic><topic>discrete wavelet transform(DWT)</topic><topic>Discrete wavelet transforms</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Kernel</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Solid modeling</topic><topic>Training</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jingran</creatorcontrib><creatorcontrib>Zhao, Jiankang</creatorcontrib><creatorcontrib>Fu, Yuchao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Jingran</au><au>Zhao, Jiankang</au><au>Fu, Yuchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Hyperspectral Image Classification Method Using Deep Fusion of 3-D Discrete Wavelet Transform and CNN</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>For the predominant classification performance, the convolutional neural network (CNN) is becoming quite popular in hyperspectral image (HSI) classification. However, quite a few parameters must be updated in the training procedure. The overfitting problem is also exacerbated by HSI's high dimensionality and limited training samples. Therefore, an end-to-end model DWTCNN that deeply integrates 3-D discrete wavelet transform (DWT) and CNN is proposed. The 3-D DWT is introduced for the intrinsic feature collection in multi-resolution, and the 3-D DWT modulated kernel with predefined parameters will not increase the trainable parameters of DWTCNN. The impact of 3D-DWT at different scale levels on classification performance is also studied. The amalgamation of 3-D DWT reduces the feature extraction burden of 3-D CNN while increasing the feature extraction capacity of the network. With a compact and light structure, our model is easier to train with less memory and limited training samples. Compared with other methods, our model has a considerable advantage in computational efficiency while maintaining good classification accuracy and clear physical meaning interpretability. Experimental results on three public datasets also demonstrate the superiority of our approach in the training process and classification performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3287188</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2187-9611</orcidid><orcidid>https://orcid.org/0000-0001-9914-233X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_10155143 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Biological system modeling Classification convolutional neural network (CNN) Convolutional neural networks Discrete Wavelet Transform discrete wavelet transform(DWT) Discrete wavelet transforms Feature extraction hyperspectral image (HSI) classification Hyperspectral imaging Image classification Kernel Mathematical models Neural networks Parameters Solid modeling Training Wavelet transforms |
title | An Efficient Hyperspectral Image Classification Method Using Deep Fusion of 3-D Discrete Wavelet Transform and CNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Hyperspectral%20Image%20Classification%20Method%20Using%20Deep%20Fusion%20of%203-D%20Discrete%20Wavelet%20Transform%20and%20CNN&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xu,%20Jingran&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3287188&rft_dat=%3Cproquest_RIE%3E2830417300%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830417300&rft_id=info:pmid/&rft_ieee_id=10155143&rfr_iscdi=true |