Accounting for azimuthal coupling in long-range ocean acoustics calculations

The parabolic equation method is an accurate and efficient approach for solving nonseparable problems in ocean acoustics in which there are horizontal variations in the environmental parameters. Many range-dependent problems may be solved using 2-D parabolic equation models that ignore coupling of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Yoritomo, John Y., Villa, Mauricio, Yoo, Kwang B., Collins, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Yoritomo, John Y.
Villa, Mauricio
Yoo, Kwang B.
Collins, Michael D.
description The parabolic equation method is an accurate and efficient approach for solving nonseparable problems in ocean acoustics in which there are horizontal variations in the environmental parameters. Many range-dependent problems may be solved using 2-D parabolic equation models that ignore coupling of energy between planes of constant azimuth. When azimuthal coupling must be taken into account, the splitting method may be used to efficiently solve a 3-D parabolic equation that handles the depth operator to higher order but handles the azimuth operator only to leading order. Despite the fact that this approximation provides a favorable combination of accuracy and efficiency for 3-D problems, run times have generally been regarded as prohibitive for the long-range problems that are often of interest in ocean acoustics. It is demonstrated here that, when propagation paths from source to receiver are confined to a relatively narrow neighborhood of the vertical plane containing the source and receiver, it is practical to solve 3-D problems out to long ranges by using nonuniform azimuthal sampling, with fine sampling near the vertical plane and extremely coarse sampling elsewhere.
doi_str_mv 10.1109/ACCESS.2023.3287217
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10155118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155118</ieee_id><doaj_id>oai_doaj_org_article_32e52f7da71f4abea93fca9d3d4bb434</doaj_id><sourcerecordid>2831529534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9f56de31ea8774d905d3da8a223757e14791e27afd03591d446b07a453f98a823</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNAvgEMkzinxK7aPVVSgUiUOhbO1ceyQKo2LnRzg63GbCnUvu5qdmV1pkuQB5QuEcvm8LMvVdrvAOSYLggXHiF8lM4wKmRFGiuuL-TaZh7DLY4kIMT5LNkut3dgPbd-k1vkUftv9OHxBl0b40B3htk871zeZh74xqdMG-hTiNgytDqmGTo8dDK3rw31yY6ELZn7ud8nny-qjfMs276_rcrnJNGFyyKRlRW0IMiA4p7XMWU1qEIAx4YwbRLlEBnOwdR75qKa0qHIOlBErBQhM7pL15Fs72KmDb_fgf5SDVp0A5xsFPn7XGUWwYdjyGjiyFCoDklgNMh6kVUUJjV5Pk9fBu-_RhEHt3Oj7-L7CgiCGJTuxyMTS3oXgjf2_inJ1TEFNKahjCuqcQlQ9TqrWGHOhQIwhJMgfOCKDSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831529534</pqid></control><display><type>article</type><title>Accounting for azimuthal coupling in long-range ocean acoustics calculations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yoritomo, John Y. ; Villa, Mauricio ; Yoo, Kwang B. ; Collins, Michael D.</creator><creatorcontrib>Yoritomo, John Y. ; Villa, Mauricio ; Yoo, Kwang B. ; Collins, Michael D.</creatorcontrib><description>The parabolic equation method is an accurate and efficient approach for solving nonseparable problems in ocean acoustics in which there are horizontal variations in the environmental parameters. Many range-dependent problems may be solved using 2-D parabolic equation models that ignore coupling of energy between planes of constant azimuth. When azimuthal coupling must be taken into account, the splitting method may be used to efficiently solve a 3-D parabolic equation that handles the depth operator to higher order but handles the azimuth operator only to leading order. Despite the fact that this approximation provides a favorable combination of accuracy and efficiency for 3-D problems, run times have generally been regarded as prohibitive for the long-range problems that are often of interest in ocean acoustics. It is demonstrated here that, when propagation paths from source to receiver are confined to a relatively narrow neighborhood of the vertical plane containing the source and receiver, it is practical to solve 3-D problems out to long ranges by using nonuniform azimuthal sampling, with fine sampling near the vertical plane and extremely coarse sampling elsewhere.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3287217</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3-D effects ; Acoustics ; Azimuth ; azimuthal coupling ; Coupling ; Couplings ; Mathematical models ; nonuniform grids ; Ocean acoustics ; Oceans ; parabolic equation method ; range dependence ; Receivers ; Sampling ; Sediments ; splitting method ; Underwater acoustics</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-9f56de31ea8774d905d3da8a223757e14791e27afd03591d446b07a453f98a823</cites><orcidid>0000-0003-0516-1033 ; 0000-0002-1034-2229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155118$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Yoritomo, John Y.</creatorcontrib><creatorcontrib>Villa, Mauricio</creatorcontrib><creatorcontrib>Yoo, Kwang B.</creatorcontrib><creatorcontrib>Collins, Michael D.</creatorcontrib><title>Accounting for azimuthal coupling in long-range ocean acoustics calculations</title><title>IEEE access</title><addtitle>Access</addtitle><description>The parabolic equation method is an accurate and efficient approach for solving nonseparable problems in ocean acoustics in which there are horizontal variations in the environmental parameters. Many range-dependent problems may be solved using 2-D parabolic equation models that ignore coupling of energy between planes of constant azimuth. When azimuthal coupling must be taken into account, the splitting method may be used to efficiently solve a 3-D parabolic equation that handles the depth operator to higher order but handles the azimuth operator only to leading order. Despite the fact that this approximation provides a favorable combination of accuracy and efficiency for 3-D problems, run times have generally been regarded as prohibitive for the long-range problems that are often of interest in ocean acoustics. It is demonstrated here that, when propagation paths from source to receiver are confined to a relatively narrow neighborhood of the vertical plane containing the source and receiver, it is practical to solve 3-D problems out to long ranges by using nonuniform azimuthal sampling, with fine sampling near the vertical plane and extremely coarse sampling elsewhere.</description><subject>3-D effects</subject><subject>Acoustics</subject><subject>Azimuth</subject><subject>azimuthal coupling</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Mathematical models</subject><subject>nonuniform grids</subject><subject>Ocean acoustics</subject><subject>Oceans</subject><subject>parabolic equation method</subject><subject>range dependence</subject><subject>Receivers</subject><subject>Sampling</subject><subject>Sediments</subject><subject>splitting method</subject><subject>Underwater acoustics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNAvgEMkzinxK7aPVVSgUiUOhbO1ceyQKo2LnRzg63GbCnUvu5qdmV1pkuQB5QuEcvm8LMvVdrvAOSYLggXHiF8lM4wKmRFGiuuL-TaZh7DLY4kIMT5LNkut3dgPbd-k1vkUftv9OHxBl0b40B3htk871zeZh74xqdMG-hTiNgytDqmGTo8dDK3rw31yY6ELZn7ud8nny-qjfMs276_rcrnJNGFyyKRlRW0IMiA4p7XMWU1qEIAx4YwbRLlEBnOwdR75qKa0qHIOlBErBQhM7pL15Fs72KmDb_fgf5SDVp0A5xsFPn7XGUWwYdjyGjiyFCoDklgNMh6kVUUJjV5Pk9fBu-_RhEHt3Oj7-L7CgiCGJTuxyMTS3oXgjf2_inJ1TEFNKahjCuqcQlQ9TqrWGHOhQIwhJMgfOCKDSQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yoritomo, John Y.</creator><creator>Villa, Mauricio</creator><creator>Yoo, Kwang B.</creator><creator>Collins, Michael D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0516-1033</orcidid><orcidid>https://orcid.org/0000-0002-1034-2229</orcidid></search><sort><creationdate>20230101</creationdate><title>Accounting for azimuthal coupling in long-range ocean acoustics calculations</title><author>Yoritomo, John Y. ; Villa, Mauricio ; Yoo, Kwang B. ; Collins, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9f56de31ea8774d905d3da8a223757e14791e27afd03591d446b07a453f98a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D effects</topic><topic>Acoustics</topic><topic>Azimuth</topic><topic>azimuthal coupling</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Mathematical models</topic><topic>nonuniform grids</topic><topic>Ocean acoustics</topic><topic>Oceans</topic><topic>parabolic equation method</topic><topic>range dependence</topic><topic>Receivers</topic><topic>Sampling</topic><topic>Sediments</topic><topic>splitting method</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoritomo, John Y.</creatorcontrib><creatorcontrib>Villa, Mauricio</creatorcontrib><creatorcontrib>Yoo, Kwang B.</creatorcontrib><creatorcontrib>Collins, Michael D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoritomo, John Y.</au><au>Villa, Mauricio</au><au>Yoo, Kwang B.</au><au>Collins, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for azimuthal coupling in long-range ocean acoustics calculations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The parabolic equation method is an accurate and efficient approach for solving nonseparable problems in ocean acoustics in which there are horizontal variations in the environmental parameters. Many range-dependent problems may be solved using 2-D parabolic equation models that ignore coupling of energy between planes of constant azimuth. When azimuthal coupling must be taken into account, the splitting method may be used to efficiently solve a 3-D parabolic equation that handles the depth operator to higher order but handles the azimuth operator only to leading order. Despite the fact that this approximation provides a favorable combination of accuracy and efficiency for 3-D problems, run times have generally been regarded as prohibitive for the long-range problems that are often of interest in ocean acoustics. It is demonstrated here that, when propagation paths from source to receiver are confined to a relatively narrow neighborhood of the vertical plane containing the source and receiver, it is practical to solve 3-D problems out to long ranges by using nonuniform azimuthal sampling, with fine sampling near the vertical plane and extremely coarse sampling elsewhere.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3287217</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0516-1033</orcidid><orcidid>https://orcid.org/0000-0002-1034-2229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10155118
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 3-D effects
Acoustics
Azimuth
azimuthal coupling
Coupling
Couplings
Mathematical models
nonuniform grids
Ocean acoustics
Oceans
parabolic equation method
range dependence
Receivers
Sampling
Sediments
splitting method
Underwater acoustics
title Accounting for azimuthal coupling in long-range ocean acoustics calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20azimuthal%20coupling%20in%20long-range%20ocean%20acoustics%20calculations&rft.jtitle=IEEE%20access&rft.au=Yoritomo,%20John%20Y.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3287217&rft_dat=%3Cproquest_ieee_%3E2831529534%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831529534&rft_id=info:pmid/&rft_ieee_id=10155118&rft_doaj_id=oai_doaj_org_article_32e52f7da71f4abea93fca9d3d4bb434&rfr_iscdi=true