A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning

In software engineering community, defect prediction is one the active domain. For the software's success, it is essential to reduce the software engineering and data-mining gap. Software defects prediction forecasts the source code errors before the testing phase. Methods for predicting softwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Mehmood, Iqra, Shahid, Sidra, Hussain, Hameed, Khan, Inayat, Ahmad, Shafiq, Rahman, Shahid, Ullah, Najeeb, Huda, Shamsul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Mehmood, Iqra
Shahid, Sidra
Hussain, Hameed
Khan, Inayat
Ahmad, Shafiq
Rahman, Shahid
Ullah, Najeeb
Huda, Shamsul
description In software engineering community, defect prediction is one the active domain. For the software's success, it is essential to reduce the software engineering and data-mining gap. Software defects prediction forecasts the source code errors before the testing phase. Methods for predicting software defects, such as clustering, statistical methods, mixed algorithms, metrics based on neural networks, black box testing, white box testing and machine learning are frequently used to explore the effect area in software. The main contribution of this research is the use of feature selection for the first time to increase the accuracy of machine learning classifiers in defects pre-diction. The objective of this study is to improve the defects prediction accuracy in five data sets of NASA namely; CM1, JM1, KC2, KC1, and PC1. These NASA data sets are open to public. In this research, the feature selection technique is use with machine-learning techniques; Random Forest, Logistic Regression, Multilayer Perceptron, Bayesian Net, Rule ZeroR, J48, Lazy IBK, Support Vector Machine, Neural Networks, and Decision Stump to achieve high defect prediction accuracy as compared to without feature selection (WOFS). The research workbench, a machine-learning tool called WEKA (Waikato Environment for Knowledge Analysis), is used to refine da-ta, preprocess data, and apply the mentioned classifiers. To assess statistical analyses, a mini tab statistical tool is used. The results of this study reveals that accuracy of defects prediction with feature selection (WFS) is improve in contrast with the accuracy of WOFS.
doi_str_mv 10.1109/ACCESS.2023.3287326
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10155117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155117</ieee_id><doaj_id>oai_doaj_org_article_207341f3982f40849bdc6930abe2fad1</doaj_id><sourcerecordid>2833275350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-1447ee572ee6139cec3eb754dfd67dad2d9c80f67ce3cf012b5f0f31096e3643</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-BHgKeW5PMJtk9LvWrUD-g6jWkyUS3tJua3Vb6701dkc5lhsd7b2Z4WXbB6JAxWl5Xo9HtdDrklMMQeKGAy4PshDNZDkCAPNybj7Pztp3TVEWChDrJ3ivyFDa4INVqFYOxn6QLZLxM8wbJNPju20QkN-jRduQloqttV4eGVNauo7Fb8tbWzQd5TMq6QTJBE5sEnGVH3ixaPP_rp9nr3e3r6GEweb4fj6rJwOa07AYszxWiUBxRMigtWsCZErnzTipnHHelLaiXyiJYTxmfCU89pK8lgszhNBv3ti6YuV7FemniVgdT618gxA9tYlfbBWpOFeTMQ1lwn9MiL2fOyhKomSH3xrHkddV7pd-_1th2eh7WsUnXa14AcCVA0MSCnmVjaNuI_n8ro3oXh-7j0Ls49F8cSXXZq2pE3FMwIRhT8ANVNoV7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833275350</pqid></control><display><type>article</type><title>A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mehmood, Iqra ; Shahid, Sidra ; Hussain, Hameed ; Khan, Inayat ; Ahmad, Shafiq ; Rahman, Shahid ; Ullah, Najeeb ; Huda, Shamsul</creator><creatorcontrib>Mehmood, Iqra ; Shahid, Sidra ; Hussain, Hameed ; Khan, Inayat ; Ahmad, Shafiq ; Rahman, Shahid ; Ullah, Najeeb ; Huda, Shamsul</creatorcontrib><description>In software engineering community, defect prediction is one the active domain. For the software's success, it is essential to reduce the software engineering and data-mining gap. Software defects prediction forecasts the source code errors before the testing phase. Methods for predicting software defects, such as clustering, statistical methods, mixed algorithms, metrics based on neural networks, black box testing, white box testing and machine learning are frequently used to explore the effect area in software. The main contribution of this research is the use of feature selection for the first time to increase the accuracy of machine learning classifiers in defects pre-diction. The objective of this study is to improve the defects prediction accuracy in five data sets of NASA namely; CM1, JM1, KC2, KC1, and PC1. These NASA data sets are open to public. In this research, the feature selection technique is use with machine-learning techniques; Random Forest, Logistic Regression, Multilayer Perceptron, Bayesian Net, Rule ZeroR, J48, Lazy IBK, Support Vector Machine, Neural Networks, and Decision Stump to achieve high defect prediction accuracy as compared to without feature selection (WOFS). The research workbench, a machine-learning tool called WEKA (Waikato Environment for Knowledge Analysis), is used to refine da-ta, preprocess data, and apply the mentioned classifiers. To assess statistical analyses, a mini tab statistical tool is used. The results of this study reveals that accuracy of defects prediction with feature selection (WFS) is improve in contrast with the accuracy of WOFS.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3287326</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Classifiers ; Clustering ; Data mining ; Datasets ; Decision trees ; Defect Prediction ; Defects ; Feature selection ; Feature Selection and Machine Learning ; Machine learning ; Machine learning algorithms ; Multilayer perceptrons ; Neural networks ; Predictive models ; Software algorithms ; Software engineering ; Software quality ; Software testing ; Source code ; Statistical analysis ; Statistical methods ; Support vector machines</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-1447ee572ee6139cec3eb754dfd67dad2d9c80f67ce3cf012b5f0f31096e3643</citedby><cites>FETCH-LOGICAL-c409t-1447ee572ee6139cec3eb754dfd67dad2d9c80f67ce3cf012b5f0f31096e3643</cites><orcidid>0000-0002-2003-940X ; 0000-0003-0712-9133 ; 0000-0001-7848-0508 ; 0009-0002-7542-736X ; 0000-0002-4343-7187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155117$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Mehmood, Iqra</creatorcontrib><creatorcontrib>Shahid, Sidra</creatorcontrib><creatorcontrib>Hussain, Hameed</creatorcontrib><creatorcontrib>Khan, Inayat</creatorcontrib><creatorcontrib>Ahmad, Shafiq</creatorcontrib><creatorcontrib>Rahman, Shahid</creatorcontrib><creatorcontrib>Ullah, Najeeb</creatorcontrib><creatorcontrib>Huda, Shamsul</creatorcontrib><title>A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>In software engineering community, defect prediction is one the active domain. For the software's success, it is essential to reduce the software engineering and data-mining gap. Software defects prediction forecasts the source code errors before the testing phase. Methods for predicting software defects, such as clustering, statistical methods, mixed algorithms, metrics based on neural networks, black box testing, white box testing and machine learning are frequently used to explore the effect area in software. The main contribution of this research is the use of feature selection for the first time to increase the accuracy of machine learning classifiers in defects pre-diction. The objective of this study is to improve the defects prediction accuracy in five data sets of NASA namely; CM1, JM1, KC2, KC1, and PC1. These NASA data sets are open to public. In this research, the feature selection technique is use with machine-learning techniques; Random Forest, Logistic Regression, Multilayer Perceptron, Bayesian Net, Rule ZeroR, J48, Lazy IBK, Support Vector Machine, Neural Networks, and Decision Stump to achieve high defect prediction accuracy as compared to without feature selection (WOFS). The research workbench, a machine-learning tool called WEKA (Waikato Environment for Knowledge Analysis), is used to refine da-ta, preprocess data, and apply the mentioned classifiers. To assess statistical analyses, a mini tab statistical tool is used. The results of this study reveals that accuracy of defects prediction with feature selection (WFS) is improve in contrast with the accuracy of WOFS.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Defect Prediction</subject><subject>Defects</subject><subject>Feature selection</subject><subject>Feature Selection and Machine Learning</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Software algorithms</subject><subject>Software engineering</subject><subject>Software quality</subject><subject>Software testing</subject><subject>Source code</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-BHgKeW5PMJtk9LvWrUD-g6jWkyUS3tJua3Vb6701dkc5lhsd7b2Z4WXbB6JAxWl5Xo9HtdDrklMMQeKGAy4PshDNZDkCAPNybj7Pztp3TVEWChDrJ3ivyFDa4INVqFYOxn6QLZLxM8wbJNPju20QkN-jRduQloqttV4eGVNauo7Fb8tbWzQd5TMq6QTJBE5sEnGVH3ixaPP_rp9nr3e3r6GEweb4fj6rJwOa07AYszxWiUBxRMigtWsCZErnzTipnHHelLaiXyiJYTxmfCU89pK8lgszhNBv3ti6YuV7FemniVgdT618gxA9tYlfbBWpOFeTMQ1lwn9MiL2fOyhKomSH3xrHkddV7pd-_1th2eh7WsUnXa14AcCVA0MSCnmVjaNuI_n8ro3oXh-7j0Ls49F8cSXXZq2pE3FMwIRhT8ANVNoV7</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mehmood, Iqra</creator><creator>Shahid, Sidra</creator><creator>Hussain, Hameed</creator><creator>Khan, Inayat</creator><creator>Ahmad, Shafiq</creator><creator>Rahman, Shahid</creator><creator>Ullah, Najeeb</creator><creator>Huda, Shamsul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2003-940X</orcidid><orcidid>https://orcid.org/0000-0003-0712-9133</orcidid><orcidid>https://orcid.org/0000-0001-7848-0508</orcidid><orcidid>https://orcid.org/0009-0002-7542-736X</orcidid><orcidid>https://orcid.org/0000-0002-4343-7187</orcidid></search><sort><creationdate>20230101</creationdate><title>A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning</title><author>Mehmood, Iqra ; Shahid, Sidra ; Hussain, Hameed ; Khan, Inayat ; Ahmad, Shafiq ; Rahman, Shahid ; Ullah, Najeeb ; Huda, Shamsul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-1447ee572ee6139cec3eb754dfd67dad2d9c80f67ce3cf012b5f0f31096e3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Defect Prediction</topic><topic>Defects</topic><topic>Feature selection</topic><topic>Feature Selection and Machine Learning</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Software algorithms</topic><topic>Software engineering</topic><topic>Software quality</topic><topic>Software testing</topic><topic>Source code</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehmood, Iqra</creatorcontrib><creatorcontrib>Shahid, Sidra</creatorcontrib><creatorcontrib>Hussain, Hameed</creatorcontrib><creatorcontrib>Khan, Inayat</creatorcontrib><creatorcontrib>Ahmad, Shafiq</creatorcontrib><creatorcontrib>Rahman, Shahid</creatorcontrib><creatorcontrib>Ullah, Najeeb</creatorcontrib><creatorcontrib>Huda, Shamsul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehmood, Iqra</au><au>Shahid, Sidra</au><au>Hussain, Hameed</au><au>Khan, Inayat</au><au>Ahmad, Shafiq</au><au>Rahman, Shahid</au><au>Ullah, Najeeb</au><au>Huda, Shamsul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In software engineering community, defect prediction is one the active domain. For the software's success, it is essential to reduce the software engineering and data-mining gap. Software defects prediction forecasts the source code errors before the testing phase. Methods for predicting software defects, such as clustering, statistical methods, mixed algorithms, metrics based on neural networks, black box testing, white box testing and machine learning are frequently used to explore the effect area in software. The main contribution of this research is the use of feature selection for the first time to increase the accuracy of machine learning classifiers in defects pre-diction. The objective of this study is to improve the defects prediction accuracy in five data sets of NASA namely; CM1, JM1, KC2, KC1, and PC1. These NASA data sets are open to public. In this research, the feature selection technique is use with machine-learning techniques; Random Forest, Logistic Regression, Multilayer Perceptron, Bayesian Net, Rule ZeroR, J48, Lazy IBK, Support Vector Machine, Neural Networks, and Decision Stump to achieve high defect prediction accuracy as compared to without feature selection (WOFS). The research workbench, a machine-learning tool called WEKA (Waikato Environment for Knowledge Analysis), is used to refine da-ta, preprocess data, and apply the mentioned classifiers. To assess statistical analyses, a mini tab statistical tool is used. The results of this study reveals that accuracy of defects prediction with feature selection (WFS) is improve in contrast with the accuracy of WOFS.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3287326</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2003-940X</orcidid><orcidid>https://orcid.org/0000-0003-0712-9133</orcidid><orcidid>https://orcid.org/0000-0001-7848-0508</orcidid><orcidid>https://orcid.org/0009-0002-7542-736X</orcidid><orcidid>https://orcid.org/0000-0002-4343-7187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10155117
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Classifiers
Clustering
Data mining
Datasets
Decision trees
Defect Prediction
Defects
Feature selection
Feature Selection and Machine Learning
Machine learning
Machine learning algorithms
Multilayer perceptrons
Neural networks
Predictive models
Software algorithms
Software engineering
Software quality
Software testing
Source code
Statistical analysis
Statistical methods
Support vector machines
title A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20to%20Improve%20Software%20Defect%20Prediction%20Accuracy%20Using%20Machine%20Learning&rft.jtitle=IEEE%20access&rft.au=Mehmood,%20Iqra&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3287326&rft_dat=%3Cproquest_ieee_%3E2833275350%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833275350&rft_id=info:pmid/&rft_ieee_id=10155117&rft_doaj_id=oai_doaj_org_article_207341f3982f40849bdc6930abe2fad1&rfr_iscdi=true