Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks

The magnetic tunnel junction (MTJ) is a highly versatile device widely used in today's spintronic applications such as magnetoresistive random-access memory (MRAM), magnetic sensors and prospectively as a read device in racetrack memory. Tuning the perpendicular (p-)MTJ stack to match the desir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-11, Vol.59 (11), p.1-1
Hauptverfasser: Durner, Christoph, Lederer, Maximilian, Gurieva, Tatiana, Hertel, Johannes, Hindenberg, Meike, Gerlich, Lukas, Wagner-Reetz, Maik, Parkin, Stuart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Durner, Christoph
Lederer, Maximilian
Gurieva, Tatiana
Hertel, Johannes
Hindenberg, Meike
Gerlich, Lukas
Wagner-Reetz, Maik
Parkin, Stuart
description The magnetic tunnel junction (MTJ) is a highly versatile device widely used in today's spintronic applications such as magnetoresistive random-access memory (MRAM), magnetic sensors and prospectively as a read device in racetrack memory. Tuning the perpendicular (p-)MTJ stack to match the desired properties, such as tunnel magnetoresistance (TMR), magnetic anisotropies or coercive field of the free layer, requires careful optimization of the deposition parameters as well as precise layer thickness control. Here, the deposition of individual layers in a wedged manner across 300 mm wafers is proposed to engineer the thicknesses within the stack more efficiently. Furthermore, this technique provides detailed insights into effects related to surface roughness, magnetic anisotropy and TMR.
doi_str_mv 10.1109/TMAG.2023.3287134
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10154176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10154176</ieee_id><sourcerecordid>2881502533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b666f97fcb6535953c959b08dd043ee52cddb92d20da8110c1caea870cf3cf4e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfibZYym1Vhoqtp7DZjNbU_PlbnLovzehPXgaZnjed-BB6JGSGaVEveyT-WrGCOMzzuKIcnGFJlQJGhASqms0IYTGgRKhuEV33h-HVUhKJqhb17bsoTaAG4tfHQDe6BM4vOud1cP1s-kP3zV4j5saJ_pQQ1cYrOscL0swnSuMLvGHa1pwXQF-bOGE4KrCi2S7C0xTtborshJwsn_Hu06bH3-PbqwuPTxc5hR9vS73i7dgs12tF_NNYLhgXZCFYWhVZE0WSi6V5EZJlZE4z4ngAJKZPM8UyxnJdTxYMNRo0HFEjOXGCuBT9HzubV3z24Pv0mPTu3p4mbI4ppIwyflA0TNlXOO9A5u2rqi0O6WUpKPcdJSbjnLTi9wh83TOFADwj6dS0CjkfypcdVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881502533</pqid></control><display><type>article</type><title>Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks</title><source>IEEE Electronic Library (IEL)</source><creator>Durner, Christoph ; Lederer, Maximilian ; Gurieva, Tatiana ; Hertel, Johannes ; Hindenberg, Meike ; Gerlich, Lukas ; Wagner-Reetz, Maik ; Parkin, Stuart</creator><creatorcontrib>Durner, Christoph ; Lederer, Maximilian ; Gurieva, Tatiana ; Hertel, Johannes ; Hindenberg, Meike ; Gerlich, Lukas ; Wagner-Reetz, Maik ; Parkin, Stuart</creatorcontrib><description>The magnetic tunnel junction (MTJ) is a highly versatile device widely used in today's spintronic applications such as magnetoresistive random-access memory (MRAM), magnetic sensors and prospectively as a read device in racetrack memory. Tuning the perpendicular (p-)MTJ stack to match the desired properties, such as tunnel magnetoresistance (TMR), magnetic anisotropies or coercive field of the free layer, requires careful optimization of the deposition parameters as well as precise layer thickness control. Here, the deposition of individual layers in a wedged manner across 300 mm wafers is proposed to engineer the thicknesses within the stack more efficiently. Furthermore, this technique provides detailed insights into effects related to surface roughness, magnetic anisotropy and TMR.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3287134</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS technology ; Coercivity ; Deposition ; Electrical properties ; Electrical resistance measurement ; Extraterrestrial measurements ; Magnetic anisotropy ; Magnetic field measurement ; Magnetic properties ; magnetic tunnel junctions (MTJs) ; Magnetic tunneling ; Magnetism ; Magnetization ; Magnetoresistivity ; Optimization ; perpendicular magnetic anisotropy ; Random access memory ; Resistance ; Surface roughness ; Thickness ; Thickness measurement ; Tunnel junctions ; Tunnel magnetoresistance</subject><ispartof>IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-b666f97fcb6535953c959b08dd043ee52cddb92d20da8110c1caea870cf3cf4e3</citedby><cites>FETCH-LOGICAL-c342t-b666f97fcb6535953c959b08dd043ee52cddb92d20da8110c1caea870cf3cf4e3</cites><orcidid>0000-0003-4702-6139 ; 0009-0006-7863-6043 ; 0000-0002-7002-3967 ; 0000-0002-1739-2747 ; 0000-0001-9750-1861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10154176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10154176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Durner, Christoph</creatorcontrib><creatorcontrib>Lederer, Maximilian</creatorcontrib><creatorcontrib>Gurieva, Tatiana</creatorcontrib><creatorcontrib>Hertel, Johannes</creatorcontrib><creatorcontrib>Hindenberg, Meike</creatorcontrib><creatorcontrib>Gerlich, Lukas</creatorcontrib><creatorcontrib>Wagner-Reetz, Maik</creatorcontrib><creatorcontrib>Parkin, Stuart</creatorcontrib><title>Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The magnetic tunnel junction (MTJ) is a highly versatile device widely used in today's spintronic applications such as magnetoresistive random-access memory (MRAM), magnetic sensors and prospectively as a read device in racetrack memory. Tuning the perpendicular (p-)MTJ stack to match the desired properties, such as tunnel magnetoresistance (TMR), magnetic anisotropies or coercive field of the free layer, requires careful optimization of the deposition parameters as well as precise layer thickness control. Here, the deposition of individual layers in a wedged manner across 300 mm wafers is proposed to engineer the thicknesses within the stack more efficiently. Furthermore, this technique provides detailed insights into effects related to surface roughness, magnetic anisotropy and TMR.</description><subject>CMOS technology</subject><subject>Coercivity</subject><subject>Deposition</subject><subject>Electrical properties</subject><subject>Electrical resistance measurement</subject><subject>Extraterrestrial measurements</subject><subject>Magnetic anisotropy</subject><subject>Magnetic field measurement</subject><subject>Magnetic properties</subject><subject>magnetic tunnel junctions (MTJs)</subject><subject>Magnetic tunneling</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetoresistivity</subject><subject>Optimization</subject><subject>perpendicular magnetic anisotropy</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>Surface roughness</subject><subject>Thickness</subject><subject>Thickness measurement</subject><subject>Tunnel junctions</subject><subject>Tunnel magnetoresistance</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfibZYym1Vhoqtp7DZjNbU_PlbnLovzehPXgaZnjed-BB6JGSGaVEveyT-WrGCOMzzuKIcnGFJlQJGhASqms0IYTGgRKhuEV33h-HVUhKJqhb17bsoTaAG4tfHQDe6BM4vOud1cP1s-kP3zV4j5saJ_pQQ1cYrOscL0swnSuMLvGHa1pwXQF-bOGE4KrCi2S7C0xTtborshJwsn_Hu06bH3-PbqwuPTxc5hR9vS73i7dgs12tF_NNYLhgXZCFYWhVZE0WSi6V5EZJlZE4z4ngAJKZPM8UyxnJdTxYMNRo0HFEjOXGCuBT9HzubV3z24Pv0mPTu3p4mbI4ppIwyflA0TNlXOO9A5u2rqi0O6WUpKPcdJSbjnLTi9wh83TOFADwj6dS0CjkfypcdVs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Durner, Christoph</creator><creator>Lederer, Maximilian</creator><creator>Gurieva, Tatiana</creator><creator>Hertel, Johannes</creator><creator>Hindenberg, Meike</creator><creator>Gerlich, Lukas</creator><creator>Wagner-Reetz, Maik</creator><creator>Parkin, Stuart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4702-6139</orcidid><orcidid>https://orcid.org/0009-0006-7863-6043</orcidid><orcidid>https://orcid.org/0000-0002-7002-3967</orcidid><orcidid>https://orcid.org/0000-0002-1739-2747</orcidid><orcidid>https://orcid.org/0000-0001-9750-1861</orcidid></search><sort><creationdate>20231101</creationdate><title>Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks</title><author>Durner, Christoph ; Lederer, Maximilian ; Gurieva, Tatiana ; Hertel, Johannes ; Hindenberg, Meike ; Gerlich, Lukas ; Wagner-Reetz, Maik ; Parkin, Stuart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b666f97fcb6535953c959b08dd043ee52cddb92d20da8110c1caea870cf3cf4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CMOS technology</topic><topic>Coercivity</topic><topic>Deposition</topic><topic>Electrical properties</topic><topic>Electrical resistance measurement</topic><topic>Extraterrestrial measurements</topic><topic>Magnetic anisotropy</topic><topic>Magnetic field measurement</topic><topic>Magnetic properties</topic><topic>magnetic tunnel junctions (MTJs)</topic><topic>Magnetic tunneling</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetoresistivity</topic><topic>Optimization</topic><topic>perpendicular magnetic anisotropy</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>Surface roughness</topic><topic>Thickness</topic><topic>Thickness measurement</topic><topic>Tunnel junctions</topic><topic>Tunnel magnetoresistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Durner, Christoph</creatorcontrib><creatorcontrib>Lederer, Maximilian</creatorcontrib><creatorcontrib>Gurieva, Tatiana</creatorcontrib><creatorcontrib>Hertel, Johannes</creatorcontrib><creatorcontrib>Hindenberg, Meike</creatorcontrib><creatorcontrib>Gerlich, Lukas</creatorcontrib><creatorcontrib>Wagner-Reetz, Maik</creatorcontrib><creatorcontrib>Parkin, Stuart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Durner, Christoph</au><au>Lederer, Maximilian</au><au>Gurieva, Tatiana</au><au>Hertel, Johannes</au><au>Hindenberg, Meike</au><au>Gerlich, Lukas</au><au>Wagner-Reetz, Maik</au><au>Parkin, Stuart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The magnetic tunnel junction (MTJ) is a highly versatile device widely used in today's spintronic applications such as magnetoresistive random-access memory (MRAM), magnetic sensors and prospectively as a read device in racetrack memory. Tuning the perpendicular (p-)MTJ stack to match the desired properties, such as tunnel magnetoresistance (TMR), magnetic anisotropies or coercive field of the free layer, requires careful optimization of the deposition parameters as well as precise layer thickness control. Here, the deposition of individual layers in a wedged manner across 300 mm wafers is proposed to engineer the thicknesses within the stack more efficiently. Furthermore, this technique provides detailed insights into effects related to surface roughness, magnetic anisotropy and TMR.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3287134</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4702-6139</orcidid><orcidid>https://orcid.org/0009-0006-7863-6043</orcidid><orcidid>https://orcid.org/0000-0002-7002-3967</orcidid><orcidid>https://orcid.org/0000-0002-1739-2747</orcidid><orcidid>https://orcid.org/0000-0001-9750-1861</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-11, Vol.59 (11), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_10154176
source IEEE Electronic Library (IEL)
subjects CMOS technology
Coercivity
Deposition
Electrical properties
Electrical resistance measurement
Extraterrestrial measurements
Magnetic anisotropy
Magnetic field measurement
Magnetic properties
magnetic tunnel junctions (MTJs)
Magnetic tunneling
Magnetism
Magnetization
Magnetoresistivity
Optimization
perpendicular magnetic anisotropy
Random access memory
Resistance
Surface roughness
Thickness
Thickness measurement
Tunnel junctions
Tunnel magnetoresistance
title Influence of Free Layer Surface Roughness on Magnetic and Electrical Properties of 300 mm CMOS-compatible MTJ Stacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Free%20Layer%20Surface%20Roughness%20on%20Magnetic%20and%20Electrical%20Properties%20of%20300%20mm%20CMOS-compatible%20MTJ%20Stacks&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Durner,%20Christoph&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3287134&rft_dat=%3Cproquest_RIE%3E2881502533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881502533&rft_id=info:pmid/&rft_ieee_id=10154176&rfr_iscdi=true