SAR data for detecting landslide phenomena: the 26 November 2022 Landslide of the Ischia island (Southern Italy)
In this work several change detection techniques based on satellite SAR data acquired by Cosmo-SkyMed Second Generation missions have been evaluated aiming at detecting the landslide-mudflow phenomenon triggered by the strong flooding event that hit Ischia Island in November 2022. It severely impact...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2023-06, p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | |
creator | Polcari, Marco Ferrentino, Emanuele Bignami, Christian Borgstrom, Sven Nappi, Rosa Siniscalchi, Valeria |
description | In this work several change detection techniques based on satellite SAR data acquired by Cosmo-SkyMed Second Generation missions have been evaluated aiming at detecting the landslide-mudflow phenomenon triggered by the strong flooding event that hit Ischia Island in November 2022. It severely impacted on Casamicciola Terme area causing damages and collapses of many buildings and unfortunately also casualties. Experimental results show how both Single- (SP) and Dual- (DP) Polarimetric techniques are able to detect the main landslide occurring along the northern flank of Mt. Epomeo and in some cases also connected phenomena such as mud accumulation. Additional analyses have been performed to quantitatively evaluate the performance of all of them showing as in this case DP techniques outperform the SP ones. The outcomes are then discussed taking into account both the features of each technique and the investigated scenario. Detecting and mapping this kind of phenomena is important for the evaluation of the affected area, especially for complex scenarios such as Ischia island, and can be very useful to support both the stakeholders for the first aid and the Civil Protection for the post-crisis management. |
doi_str_mv | 10.1109/JSTARS.2023.3286993 |
format | Article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10154118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10154118</ieee_id><sourcerecordid>10154118</sourcerecordid><originalsourceid>FETCH-ieee_primary_101541183</originalsourceid><addsrcrecordid>eNqFjT1vwjAURT2AVEr7C2B4YzuQ-tkh4G4IFZWq6kDYkSEvxCixI9sg8e_5UNW105XOPbqXsQHyBJGrt698PVvlieBCJlJMM6Vkh_VQSTXClKcP7DGEA-eZmCjZY20-W0Gho4bSeSgo0i4au4da2yLUpiBoK7KuIavfIVYEIoMfd6JmSx6uHwK-_0xX3o1l2FVGgwm3DXjJ3fFKvYVl1PX59Yl1S10Hev7NPhsuPtbzz5Ehok3rTaP9eYMcxyniVP5TXwBb7Ugd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SAR data for detecting landslide phenomena: the 26 November 2022 Landslide of the Ischia island (Southern Italy)</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Polcari, Marco ; Ferrentino, Emanuele ; Bignami, Christian ; Borgstrom, Sven ; Nappi, Rosa ; Siniscalchi, Valeria</creator><creatorcontrib>Polcari, Marco ; Ferrentino, Emanuele ; Bignami, Christian ; Borgstrom, Sven ; Nappi, Rosa ; Siniscalchi, Valeria</creatorcontrib><description>In this work several change detection techniques based on satellite SAR data acquired by Cosmo-SkyMed Second Generation missions have been evaluated aiming at detecting the landslide-mudflow phenomenon triggered by the strong flooding event that hit Ischia Island in November 2022. It severely impacted on Casamicciola Terme area causing damages and collapses of many buildings and unfortunately also casualties. Experimental results show how both Single- (SP) and Dual- (DP) Polarimetric techniques are able to detect the main landslide occurring along the northern flank of Mt. Epomeo and in some cases also connected phenomena such as mud accumulation. Additional analyses have been performed to quantitatively evaluate the performance of all of them showing as in this case DP techniques outperform the SP ones. The outcomes are then discussed taking into account both the features of each technique and the investigated scenario. Detecting and mapping this kind of phenomena is important for the evaluation of the affected area, especially for complex scenarios such as Ischia island, and can be very useful to support both the stakeholders for the first aid and the Civil Protection for the post-crisis management.</description><identifier>ISSN: 1939-1404</identifier><identifier>DOI: 10.1109/JSTARS.2023.3286993</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Change detection ; Coherence ; Floods ; Ischia Island ; Landslide ; Radar polarimetry ; SAR images ; Satellites ; Synthetic aperture radar ; Terrain factors ; Urban areas</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2023-06, p.1-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0506-3492 ; 0000-0001-8031-8980 ; 0000-0002-8632-9979 ; 0000-0003-0421-6477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Polcari, Marco</creatorcontrib><creatorcontrib>Ferrentino, Emanuele</creatorcontrib><creatorcontrib>Bignami, Christian</creatorcontrib><creatorcontrib>Borgstrom, Sven</creatorcontrib><creatorcontrib>Nappi, Rosa</creatorcontrib><creatorcontrib>Siniscalchi, Valeria</creatorcontrib><title>SAR data for detecting landslide phenomena: the 26 November 2022 Landslide of the Ischia island (Southern Italy)</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this work several change detection techniques based on satellite SAR data acquired by Cosmo-SkyMed Second Generation missions have been evaluated aiming at detecting the landslide-mudflow phenomenon triggered by the strong flooding event that hit Ischia Island in November 2022. It severely impacted on Casamicciola Terme area causing damages and collapses of many buildings and unfortunately also casualties. Experimental results show how both Single- (SP) and Dual- (DP) Polarimetric techniques are able to detect the main landslide occurring along the northern flank of Mt. Epomeo and in some cases also connected phenomena such as mud accumulation. Additional analyses have been performed to quantitatively evaluate the performance of all of them showing as in this case DP techniques outperform the SP ones. The outcomes are then discussed taking into account both the features of each technique and the investigated scenario. Detecting and mapping this kind of phenomena is important for the evaluation of the affected area, especially for complex scenarios such as Ischia island, and can be very useful to support both the stakeholders for the first aid and the Civil Protection for the post-crisis management.</description><subject>Change detection</subject><subject>Coherence</subject><subject>Floods</subject><subject>Ischia Island</subject><subject>Landslide</subject><subject>Radar polarimetry</subject><subject>SAR images</subject><subject>Satellites</subject><subject>Synthetic aperture radar</subject><subject>Terrain factors</subject><subject>Urban areas</subject><issn>1939-1404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNqFjT1vwjAURT2AVEr7C2B4YzuQ-tkh4G4IFZWq6kDYkSEvxCixI9sg8e_5UNW105XOPbqXsQHyBJGrt698PVvlieBCJlJMM6Vkh_VQSTXClKcP7DGEA-eZmCjZY20-W0Gho4bSeSgo0i4au4da2yLUpiBoK7KuIavfIVYEIoMfd6JmSx6uHwK-_0xX3o1l2FVGgwm3DXjJ3fFKvYVl1PX59Yl1S10Hev7NPhsuPtbzz5Ehok3rTaP9eYMcxyniVP5TXwBb7Ugd</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Polcari, Marco</creator><creator>Ferrentino, Emanuele</creator><creator>Bignami, Christian</creator><creator>Borgstrom, Sven</creator><creator>Nappi, Rosa</creator><creator>Siniscalchi, Valeria</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-0506-3492</orcidid><orcidid>https://orcid.org/0000-0001-8031-8980</orcidid><orcidid>https://orcid.org/0000-0002-8632-9979</orcidid><orcidid>https://orcid.org/0000-0003-0421-6477</orcidid></search><sort><creationdate>20230615</creationdate><title>SAR data for detecting landslide phenomena: the 26 November 2022 Landslide of the Ischia island (Southern Italy)</title><author>Polcari, Marco ; Ferrentino, Emanuele ; Bignami, Christian ; Borgstrom, Sven ; Nappi, Rosa ; Siniscalchi, Valeria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101541183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Change detection</topic><topic>Coherence</topic><topic>Floods</topic><topic>Ischia Island</topic><topic>Landslide</topic><topic>Radar polarimetry</topic><topic>SAR images</topic><topic>Satellites</topic><topic>Synthetic aperture radar</topic><topic>Terrain factors</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polcari, Marco</creatorcontrib><creatorcontrib>Ferrentino, Emanuele</creatorcontrib><creatorcontrib>Bignami, Christian</creatorcontrib><creatorcontrib>Borgstrom, Sven</creatorcontrib><creatorcontrib>Nappi, Rosa</creatorcontrib><creatorcontrib>Siniscalchi, Valeria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polcari, Marco</au><au>Ferrentino, Emanuele</au><au>Bignami, Christian</au><au>Borgstrom, Sven</au><au>Nappi, Rosa</au><au>Siniscalchi, Valeria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAR data for detecting landslide phenomena: the 26 November 2022 Landslide of the Ischia island (Southern Italy)</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2023-06-15</date><risdate>2023</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1939-1404</issn><coden>IJSTHZ</coden><abstract>In this work several change detection techniques based on satellite SAR data acquired by Cosmo-SkyMed Second Generation missions have been evaluated aiming at detecting the landslide-mudflow phenomenon triggered by the strong flooding event that hit Ischia Island in November 2022. It severely impacted on Casamicciola Terme area causing damages and collapses of many buildings and unfortunately also casualties. Experimental results show how both Single- (SP) and Dual- (DP) Polarimetric techniques are able to detect the main landslide occurring along the northern flank of Mt. Epomeo and in some cases also connected phenomena such as mud accumulation. Additional analyses have been performed to quantitatively evaluate the performance of all of them showing as in this case DP techniques outperform the SP ones. The outcomes are then discussed taking into account both the features of each technique and the investigated scenario. Detecting and mapping this kind of phenomena is important for the evaluation of the affected area, especially for complex scenarios such as Ischia island, and can be very useful to support both the stakeholders for the first aid and the Civil Protection for the post-crisis management.</abstract><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3286993</doi><orcidid>https://orcid.org/0000-0003-0506-3492</orcidid><orcidid>https://orcid.org/0000-0001-8031-8980</orcidid><orcidid>https://orcid.org/0000-0002-8632-9979</orcidid><orcidid>https://orcid.org/0000-0003-0421-6477</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2023-06, p.1-10 |
issn | 1939-1404 |
language | eng |
recordid | cdi_ieee_primary_10154118 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Change detection Coherence Floods Ischia Island Landslide Radar polarimetry SAR images Satellites Synthetic aperture radar Terrain factors Urban areas |
title | SAR data for detecting landslide phenomena: the 26 November 2022 Landslide of the Ischia island (Southern Italy) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAR%20data%20for%20detecting%20landslide%20phenomena:%20the%2026%20November%202022%20Landslide%20of%20the%20Ischia%20island%20(Southern%20Italy)&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Polcari,%20Marco&rft.date=2023-06-15&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1939-1404&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3286993&rft_dat=%3Cieee%3E10154118%3C/ieee%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10154118&rfr_iscdi=true |