Realization of Control Algorithm for Vehicle Optoelectronic Tracking Platform Based on Sliding Mode Control and Active Disturbance Rejection Control Optimized by Differential Evolution Algorithm
In order to improve the tracking ability of the vehicle mounted photoelectric tracking platform, and make its tracking system has the characteristics of rapid response, small overshoot, high-precision position tracking, strong anti-interference and good robustness, In this paper, a joint active dist...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Wu, Zhaolong Chen, Zhaobing Xu, Bohan Pang, Shushuai Lin, Feng |
description | In order to improve the tracking ability of the vehicle mounted photoelectric tracking platform, and make its tracking system has the characteristics of rapid response, small overshoot, high-precision position tracking, strong anti-interference and good robustness, In this paper, a joint active disturbance rejection control (ADRC) and sliding mode control (SMC) method is proposed, which can effectively improve the tracking ability of the equipment. Firstly, the mathematical model of the DC motor is analyzed, and then the sliding mode control based on the linear extended state observer (LESO) and the third-order tracking differentiator is established as the speed loop control of the system. Finally, the parameters of the nonlinear ADRC which built control system,s position loop are optimized by the improved differential evolution (DE) algorithm. The speed loop simulation results show that the proposed algorithm has better control effect than PID control algorithm, Robust control algorithm, and ADRC control algorithm; The simulation of position loop demonstrates that the performance of the controller optimized by DE algorithm is better than the parameter tuning based on experience. The experimental results illustrate that the proposed control algorithm can ensure that the Optoelectronic Tracking equipment can track the target which 3km away with 0.1 mrad accuracy. |
doi_str_mv | 10.1109/ACCESS.2023.3286868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10154049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10154049</ieee_id><doaj_id>oai_doaj_org_article_93a55d7b9ceb44c8b7baa35ed68c1326</doaj_id><sourcerecordid>2828939493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-e09c8c4ea989df48b11291b056ead6ef58116b6fb66c1e522a0411325027dbc53</originalsourceid><addsrcrecordid>eNpNkc1uEzEUhUcIJKq2TwALS6wT_DN2xsswpFCpqKgpbC3_3EkdnHHwOJXax-PJ6umUqPbC1vU5373yqaoPBM8JwfLzsm1X6_WcYsrmjDai7DfVCSVCzhhn4u2r-_vqfBi2uKymlPjipPp3Azr4R5197FHsUBv7nGJAy7CJyee7HepiQr_hztsA6HqfIwSwRdJ7i26Ttn98v0E_g85Ft0Nf9AAOFdQ6eDe-_IgOjlDdO7S02d8D-uqHfEhG9xbQDWwLchzgv7D08Tv_WFDmoUi7DhL02euAVvcxHJ61xwnPqnedDgOcv5yn1a-L1W37fXZ1_e2yXV7NbI1lngGWtrE1aNlI19WNIYRKYjAXoJ2AjjeECCM6I4QlwCnVuCaEUY7pwhnL2Wl1OXFd1Fu1T36n04OK2qvnQkwbpVMe_0lJpjl3CyMtmLq2jVkYrRkHJxpbkKKwPk2sfYp_DzBktY2H1JfxFW1oI5msJSsqNqlsisOQoDt2JViN2aspezVmr16yL66Pk8sDwCsH4TUu1CfPUa8o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828939493</pqid></control><display><type>article</type><title>Realization of Control Algorithm for Vehicle Optoelectronic Tracking Platform Based on Sliding Mode Control and Active Disturbance Rejection Control Optimized by Differential Evolution Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Zhaolong ; Chen, Zhaobing ; Xu, Bohan ; Pang, Shushuai ; Lin, Feng</creator><creatorcontrib>Wu, Zhaolong ; Chen, Zhaobing ; Xu, Bohan ; Pang, Shushuai ; Lin, Feng</creatorcontrib><description>In order to improve the tracking ability of the vehicle mounted photoelectric tracking platform, and make its tracking system has the characteristics of rapid response, small overshoot, high-precision position tracking, strong anti-interference and good robustness, In this paper, a joint active disturbance rejection control (ADRC) and sliding mode control (SMC) method is proposed, which can effectively improve the tracking ability of the equipment. Firstly, the mathematical model of the DC motor is analyzed, and then the sliding mode control based on the linear extended state observer (LESO) and the third-order tracking differentiator is established as the speed loop control of the system. Finally, the parameters of the nonlinear ADRC which built control system,s position loop are optimized by the improved differential evolution (DE) algorithm. The speed loop simulation results show that the proposed algorithm has better control effect than PID control algorithm, Robust control algorithm, and ADRC control algorithm; The simulation of position loop demonstrates that the performance of the controller optimized by DE algorithm is better than the parameter tuning based on experience. The experimental results illustrate that the proposed control algorithm can ensure that the Optoelectronic Tracking equipment can track the target which 3km away with 0.1 mrad accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3286868</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active control ; ADRC ; Control algorithms ; Control equipment ; Control systems ; Control theory ; D C motors ; DC motors ; DC-motor ; Differential Evolution ; Electric motors ; Evolutionary algorithms ; Evolutionary computation ; Mathematical models ; Opto-electronic tracking and pointing servo control ; Optoelectronics ; Parameters ; Photoelectricity ; Proportional integral derivative ; Rejection ; Robust control ; Sliding mode control ; SMC ; State observers ; Torque ; Tracking devices ; Tracking loops ; Tracking systems ; Tuning</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-e09c8c4ea989df48b11291b056ead6ef58116b6fb66c1e522a0411325027dbc53</citedby><cites>FETCH-LOGICAL-c409t-e09c8c4ea989df48b11291b056ead6ef58116b6fb66c1e522a0411325027dbc53</cites><orcidid>0009-0008-5600-471X ; 0009-0005-4951-1682 ; 0009-0003-1456-3808 ; 0009-0005-1753-9429 ; 0009-0008-7721-226X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10154049$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Zhaolong</creatorcontrib><creatorcontrib>Chen, Zhaobing</creatorcontrib><creatorcontrib>Xu, Bohan</creatorcontrib><creatorcontrib>Pang, Shushuai</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><title>Realization of Control Algorithm for Vehicle Optoelectronic Tracking Platform Based on Sliding Mode Control and Active Disturbance Rejection Control Optimized by Differential Evolution Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to improve the tracking ability of the vehicle mounted photoelectric tracking platform, and make its tracking system has the characteristics of rapid response, small overshoot, high-precision position tracking, strong anti-interference and good robustness, In this paper, a joint active disturbance rejection control (ADRC) and sliding mode control (SMC) method is proposed, which can effectively improve the tracking ability of the equipment. Firstly, the mathematical model of the DC motor is analyzed, and then the sliding mode control based on the linear extended state observer (LESO) and the third-order tracking differentiator is established as the speed loop control of the system. Finally, the parameters of the nonlinear ADRC which built control system,s position loop are optimized by the improved differential evolution (DE) algorithm. The speed loop simulation results show that the proposed algorithm has better control effect than PID control algorithm, Robust control algorithm, and ADRC control algorithm; The simulation of position loop demonstrates that the performance of the controller optimized by DE algorithm is better than the parameter tuning based on experience. The experimental results illustrate that the proposed control algorithm can ensure that the Optoelectronic Tracking equipment can track the target which 3km away with 0.1 mrad accuracy.</description><subject>Active control</subject><subject>ADRC</subject><subject>Control algorithms</subject><subject>Control equipment</subject><subject>Control systems</subject><subject>Control theory</subject><subject>D C motors</subject><subject>DC motors</subject><subject>DC-motor</subject><subject>Differential Evolution</subject><subject>Electric motors</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Mathematical models</subject><subject>Opto-electronic tracking and pointing servo control</subject><subject>Optoelectronics</subject><subject>Parameters</subject><subject>Photoelectricity</subject><subject>Proportional integral derivative</subject><subject>Rejection</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>SMC</subject><subject>State observers</subject><subject>Torque</subject><subject>Tracking devices</subject><subject>Tracking loops</subject><subject>Tracking systems</subject><subject>Tuning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uEzEUhUcIJKq2TwALS6wT_DN2xsswpFCpqKgpbC3_3EkdnHHwOJXax-PJ6umUqPbC1vU5373yqaoPBM8JwfLzsm1X6_WcYsrmjDai7DfVCSVCzhhn4u2r-_vqfBi2uKymlPjipPp3Azr4R5197FHsUBv7nGJAy7CJyee7HepiQr_hztsA6HqfIwSwRdJ7i26Ttn98v0E_g85Ft0Nf9AAOFdQ6eDe-_IgOjlDdO7S02d8D-uqHfEhG9xbQDWwLchzgv7D08Tv_WFDmoUi7DhL02euAVvcxHJ61xwnPqnedDgOcv5yn1a-L1W37fXZ1_e2yXV7NbI1lngGWtrE1aNlI19WNIYRKYjAXoJ2AjjeECCM6I4QlwCnVuCaEUY7pwhnL2Wl1OXFd1Fu1T36n04OK2qvnQkwbpVMe_0lJpjl3CyMtmLq2jVkYrRkHJxpbkKKwPk2sfYp_DzBktY2H1JfxFW1oI5msJSsqNqlsisOQoDt2JViN2aspezVmr16yL66Pk8sDwCsH4TUu1CfPUa8o</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Zhaolong</creator><creator>Chen, Zhaobing</creator><creator>Xu, Bohan</creator><creator>Pang, Shushuai</creator><creator>Lin, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-5600-471X</orcidid><orcidid>https://orcid.org/0009-0005-4951-1682</orcidid><orcidid>https://orcid.org/0009-0003-1456-3808</orcidid><orcidid>https://orcid.org/0009-0005-1753-9429</orcidid><orcidid>https://orcid.org/0009-0008-7721-226X</orcidid></search><sort><creationdate>20230101</creationdate><title>Realization of Control Algorithm for Vehicle Optoelectronic Tracking Platform Based on Sliding Mode Control and Active Disturbance Rejection Control Optimized by Differential Evolution Algorithm</title><author>Wu, Zhaolong ; Chen, Zhaobing ; Xu, Bohan ; Pang, Shushuai ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-e09c8c4ea989df48b11291b056ead6ef58116b6fb66c1e522a0411325027dbc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>ADRC</topic><topic>Control algorithms</topic><topic>Control equipment</topic><topic>Control systems</topic><topic>Control theory</topic><topic>D C motors</topic><topic>DC motors</topic><topic>DC-motor</topic><topic>Differential Evolution</topic><topic>Electric motors</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Mathematical models</topic><topic>Opto-electronic tracking and pointing servo control</topic><topic>Optoelectronics</topic><topic>Parameters</topic><topic>Photoelectricity</topic><topic>Proportional integral derivative</topic><topic>Rejection</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>SMC</topic><topic>State observers</topic><topic>Torque</topic><topic>Tracking devices</topic><topic>Tracking loops</topic><topic>Tracking systems</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhaolong</creatorcontrib><creatorcontrib>Chen, Zhaobing</creatorcontrib><creatorcontrib>Xu, Bohan</creatorcontrib><creatorcontrib>Pang, Shushuai</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhaolong</au><au>Chen, Zhaobing</au><au>Xu, Bohan</au><au>Pang, Shushuai</au><au>Lin, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of Control Algorithm for Vehicle Optoelectronic Tracking Platform Based on Sliding Mode Control and Active Disturbance Rejection Control Optimized by Differential Evolution Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to improve the tracking ability of the vehicle mounted photoelectric tracking platform, and make its tracking system has the characteristics of rapid response, small overshoot, high-precision position tracking, strong anti-interference and good robustness, In this paper, a joint active disturbance rejection control (ADRC) and sliding mode control (SMC) method is proposed, which can effectively improve the tracking ability of the equipment. Firstly, the mathematical model of the DC motor is analyzed, and then the sliding mode control based on the linear extended state observer (LESO) and the third-order tracking differentiator is established as the speed loop control of the system. Finally, the parameters of the nonlinear ADRC which built control system,s position loop are optimized by the improved differential evolution (DE) algorithm. The speed loop simulation results show that the proposed algorithm has better control effect than PID control algorithm, Robust control algorithm, and ADRC control algorithm; The simulation of position loop demonstrates that the performance of the controller optimized by DE algorithm is better than the parameter tuning based on experience. The experimental results illustrate that the proposed control algorithm can ensure that the Optoelectronic Tracking equipment can track the target which 3km away with 0.1 mrad accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3286868</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0008-5600-471X</orcidid><orcidid>https://orcid.org/0009-0005-4951-1682</orcidid><orcidid>https://orcid.org/0009-0003-1456-3808</orcidid><orcidid>https://orcid.org/0009-0005-1753-9429</orcidid><orcidid>https://orcid.org/0009-0008-7721-226X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10154049 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Active control ADRC Control algorithms Control equipment Control systems Control theory D C motors DC motors DC-motor Differential Evolution Electric motors Evolutionary algorithms Evolutionary computation Mathematical models Opto-electronic tracking and pointing servo control Optoelectronics Parameters Photoelectricity Proportional integral derivative Rejection Robust control Sliding mode control SMC State observers Torque Tracking devices Tracking loops Tracking systems Tuning |
title | Realization of Control Algorithm for Vehicle Optoelectronic Tracking Platform Based on Sliding Mode Control and Active Disturbance Rejection Control Optimized by Differential Evolution Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20Control%20Algorithm%20for%20Vehicle%20Optoelectronic%20Tracking%20Platform%20Based%20on%20Sliding%20Mode%20Control%20and%20Active%20Disturbance%20Rejection%20Control%20Optimized%20by%20Differential%20Evolution%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Wu,%20Zhaolong&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3286868&rft_dat=%3Cproquest_ieee_%3E2828939493%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828939493&rft_id=info:pmid/&rft_ieee_id=10154049&rft_doaj_id=oai_doaj_org_article_93a55d7b9ceb44c8b7baa35ed68c1326&rfr_iscdi=true |