Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot

This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-08, Vol.8 (8), p.1-8
Hauptverfasser: Zhao, Ziming, Li, Yezhuo, Wu, Jianxu, Yao, Yan-an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 8
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 8
creator Zhao, Ziming
Li, Yezhuo
Wu, Jianxu
Yao, Yan-an
description This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).
doi_str_mv 10.1109/LRA.2023.3284374
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10146454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10146454</ieee_id><sourcerecordid>2828940523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7d635143c17518b577a2ca32f007d6c01ca396c23d6ed8c44a7f0457fdf1177b3</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoSHN3qGDoLNTfVr2GNz0AwwtIZ2FLEutgmylklPIv69NMmS6O-l9juMB4B6jJcaofKo3qyVBhC4pKRgV7ArMCBUioyLPry_6W7BIaYcQwpwIWvIZsOv-z_iwzyrvusb137AOOnRhcKGHn171_fSm-hZWaq8a591whKte-WNyCQYLFXw2NsRONd7ArRmi-jFtHOFN8H5iN6EJwx24sconszjXOfh6WW-rt6z-eH2vVnWmCeNDJtqccsyoxoLjouFCKKIVJRah8UsjPA5lrgltc9MWmjElLGJc2NZiLERD5-DxtHcfw-_BpEHuwiGO5yZJClKUDHFCxxQ6pXQMKUVj5T66TsWjxEhOQuUoVE5C5VnoiDycEGeMuYhjljPO6D9x13FS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828940523</pqid></control><display><type>article</type><title>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ziming ; Li, Yezhuo ; Wu, Jianxu ; Yao, Yan-an</creator><creatorcontrib>Zhao, Ziming ; Li, Yezhuo ; Wu, Jianxu ; Yao, Yan-an</creatorcontrib><description>This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3284374</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Barriers ; Climbing ; Formability ; Kinematics ; Locomotion ; Mechanism Design ; Obstacle-Crossing Capability ; Path planning ; Planning ; Polyhedra ; Robot dynamics ; Robot kinematics ; Robots ; Rolling Robot ; Servomotors ; Shape ; Tetrahedra ; Tetrahedron Mechanism ; Triangles</subject><ispartof>IEEE robotics and automation letters, 2023-08, Vol.8 (8), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7d635143c17518b577a2ca32f007d6c01ca396c23d6ed8c44a7f0457fdf1177b3</cites><orcidid>0000-0002-3446-989X ; 0000-0003-3929-0415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10146454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10146454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ziming</creatorcontrib><creatorcontrib>Li, Yezhuo</creatorcontrib><creatorcontrib>Wu, Jianxu</creatorcontrib><creatorcontrib>Yao, Yan-an</creatorcontrib><title>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).</description><subject>Actuators</subject><subject>Barriers</subject><subject>Climbing</subject><subject>Formability</subject><subject>Kinematics</subject><subject>Locomotion</subject><subject>Mechanism Design</subject><subject>Obstacle-Crossing Capability</subject><subject>Path planning</subject><subject>Planning</subject><subject>Polyhedra</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Rolling Robot</subject><subject>Servomotors</subject><subject>Shape</subject><subject>Tetrahedra</subject><subject>Tetrahedron Mechanism</subject><subject>Triangles</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1rwzAQhkVpoSHN3qGDoLNTfVr2GNz0AwwtIZ2FLEutgmylklPIv69NMmS6O-l9juMB4B6jJcaofKo3qyVBhC4pKRgV7ArMCBUioyLPry_6W7BIaYcQwpwIWvIZsOv-z_iwzyrvusb137AOOnRhcKGHn171_fSm-hZWaq8a591whKte-WNyCQYLFXw2NsRONd7ArRmi-jFtHOFN8H5iN6EJwx24sconszjXOfh6WW-rt6z-eH2vVnWmCeNDJtqccsyoxoLjouFCKKIVJRah8UsjPA5lrgltc9MWmjElLGJc2NZiLERD5-DxtHcfw-_BpEHuwiGO5yZJClKUDHFCxxQ6pXQMKUVj5T66TsWjxEhOQuUoVE5C5VnoiDycEGeMuYhjljPO6D9x13FS</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhao, Ziming</creator><creator>Li, Yezhuo</creator><creator>Wu, Jianxu</creator><creator>Yao, Yan-an</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3446-989X</orcidid><orcidid>https://orcid.org/0000-0003-3929-0415</orcidid></search><sort><creationdate>20230801</creationdate><title>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</title><author>Zhao, Ziming ; Li, Yezhuo ; Wu, Jianxu ; Yao, Yan-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7d635143c17518b577a2ca32f007d6c01ca396c23d6ed8c44a7f0457fdf1177b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Barriers</topic><topic>Climbing</topic><topic>Formability</topic><topic>Kinematics</topic><topic>Locomotion</topic><topic>Mechanism Design</topic><topic>Obstacle-Crossing Capability</topic><topic>Path planning</topic><topic>Planning</topic><topic>Polyhedra</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Rolling Robot</topic><topic>Servomotors</topic><topic>Shape</topic><topic>Tetrahedra</topic><topic>Tetrahedron Mechanism</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ziming</creatorcontrib><creatorcontrib>Li, Yezhuo</creatorcontrib><creatorcontrib>Wu, Jianxu</creatorcontrib><creatorcontrib>Yao, Yan-an</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ziming</au><au>Li, Yezhuo</au><au>Wu, Jianxu</au><au>Yao, Yan-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>8</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3284374</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3446-989X</orcidid><orcidid>https://orcid.org/0000-0003-3929-0415</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-08, Vol.8 (8), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10146454
source IEEE Electronic Library (IEL)
subjects Actuators
Barriers
Climbing
Formability
Kinematics
Locomotion
Mechanism Design
Obstacle-Crossing Capability
Path planning
Planning
Polyhedra
Robot dynamics
Robot kinematics
Robots
Rolling Robot
Servomotors
Shape
Tetrahedra
Tetrahedron Mechanism
Triangles
title Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Envelop-Climbing%20Locomotion%20Planning%20and%20Capability%20Analysis%20of%20a%20Deformable%20Tetrahedron%20Rolling%20Robot&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhao,%20Ziming&rft.date=2023-08-01&rft.volume=8&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3284374&rft_dat=%3Cproquest_RIE%3E2828940523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828940523&rft_id=info:pmid/&rft_ieee_id=10146454&rfr_iscdi=true