Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot
This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is propos...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-08, Vol.8 (8), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Zhao, Ziming Li, Yezhuo Wu, Jianxu Yao, Yan-an |
description | This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video). |
doi_str_mv | 10.1109/LRA.2023.3284374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10146454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10146454</ieee_id><sourcerecordid>2828940523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7d635143c17518b577a2ca32f007d6c01ca396c23d6ed8c44a7f0457fdf1177b3</originalsourceid><addsrcrecordid>eNpNkD1rwzAQhkVpoSHN3qGDoLNTfVr2GNz0AwwtIZ2FLEutgmylklPIv69NMmS6O-l9juMB4B6jJcaofKo3qyVBhC4pKRgV7ArMCBUioyLPry_6W7BIaYcQwpwIWvIZsOv-z_iwzyrvusb137AOOnRhcKGHn171_fSm-hZWaq8a591whKte-WNyCQYLFXw2NsRONd7ArRmi-jFtHOFN8H5iN6EJwx24sconszjXOfh6WW-rt6z-eH2vVnWmCeNDJtqccsyoxoLjouFCKKIVJRah8UsjPA5lrgltc9MWmjElLGJc2NZiLERD5-DxtHcfw-_BpEHuwiGO5yZJClKUDHFCxxQ6pXQMKUVj5T66TsWjxEhOQuUoVE5C5VnoiDycEGeMuYhjljPO6D9x13FS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828940523</pqid></control><display><type>article</type><title>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ziming ; Li, Yezhuo ; Wu, Jianxu ; Yao, Yan-an</creator><creatorcontrib>Zhao, Ziming ; Li, Yezhuo ; Wu, Jianxu ; Yao, Yan-an</creatorcontrib><description>This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3284374</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Barriers ; Climbing ; Formability ; Kinematics ; Locomotion ; Mechanism Design ; Obstacle-Crossing Capability ; Path planning ; Planning ; Polyhedra ; Robot dynamics ; Robot kinematics ; Robots ; Rolling Robot ; Servomotors ; Shape ; Tetrahedra ; Tetrahedron Mechanism ; Triangles</subject><ispartof>IEEE robotics and automation letters, 2023-08, Vol.8 (8), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7d635143c17518b577a2ca32f007d6c01ca396c23d6ed8c44a7f0457fdf1177b3</cites><orcidid>0000-0002-3446-989X ; 0000-0003-3929-0415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10146454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10146454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ziming</creatorcontrib><creatorcontrib>Li, Yezhuo</creatorcontrib><creatorcontrib>Wu, Jianxu</creatorcontrib><creatorcontrib>Yao, Yan-an</creatorcontrib><title>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).</description><subject>Actuators</subject><subject>Barriers</subject><subject>Climbing</subject><subject>Formability</subject><subject>Kinematics</subject><subject>Locomotion</subject><subject>Mechanism Design</subject><subject>Obstacle-Crossing Capability</subject><subject>Path planning</subject><subject>Planning</subject><subject>Polyhedra</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Rolling Robot</subject><subject>Servomotors</subject><subject>Shape</subject><subject>Tetrahedra</subject><subject>Tetrahedron Mechanism</subject><subject>Triangles</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1rwzAQhkVpoSHN3qGDoLNTfVr2GNz0AwwtIZ2FLEutgmylklPIv69NMmS6O-l9juMB4B6jJcaofKo3qyVBhC4pKRgV7ArMCBUioyLPry_6W7BIaYcQwpwIWvIZsOv-z_iwzyrvusb137AOOnRhcKGHn171_fSm-hZWaq8a591whKte-WNyCQYLFXw2NsRONd7ArRmi-jFtHOFN8H5iN6EJwx24sconszjXOfh6WW-rt6z-eH2vVnWmCeNDJtqccsyoxoLjouFCKKIVJRah8UsjPA5lrgltc9MWmjElLGJc2NZiLERD5-DxtHcfw-_BpEHuwiGO5yZJClKUDHFCxxQ6pXQMKUVj5T66TsWjxEhOQuUoVE5C5VnoiDycEGeMuYhjljPO6D9x13FS</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhao, Ziming</creator><creator>Li, Yezhuo</creator><creator>Wu, Jianxu</creator><creator>Yao, Yan-an</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3446-989X</orcidid><orcidid>https://orcid.org/0000-0003-3929-0415</orcidid></search><sort><creationdate>20230801</creationdate><title>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</title><author>Zhao, Ziming ; Li, Yezhuo ; Wu, Jianxu ; Yao, Yan-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7d635143c17518b577a2ca32f007d6c01ca396c23d6ed8c44a7f0457fdf1177b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Barriers</topic><topic>Climbing</topic><topic>Formability</topic><topic>Kinematics</topic><topic>Locomotion</topic><topic>Mechanism Design</topic><topic>Obstacle-Crossing Capability</topic><topic>Path planning</topic><topic>Planning</topic><topic>Polyhedra</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Rolling Robot</topic><topic>Servomotors</topic><topic>Shape</topic><topic>Tetrahedra</topic><topic>Tetrahedron Mechanism</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ziming</creatorcontrib><creatorcontrib>Li, Yezhuo</creatorcontrib><creatorcontrib>Wu, Jianxu</creatorcontrib><creatorcontrib>Yao, Yan-an</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ziming</au><au>Li, Yezhuo</au><au>Wu, Jianxu</au><au>Yao, Yan-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>8</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This paper proposes an envelop-climbing locomotion planning for vertical obstacles by concave polyhedron construction in order to achieve high terrain adaptability of polyhedron robots. Using the triangle outline of the supporting area, a Z-shape path planning along the section of terrains is proposed. Three actions (Bridging, Enveloping and Climbing) for obstacle-crossing are sequentially planned and analyzed by constructing the external shape of concave polyhedrons to cover obstacles in the path. The kinematics analysis of the obstacle-crossing critical state for each action is established. The expression of central mass (CM), obstacle height and distance are deduced by homogeneous transformation matrix. The numerical solution of the maximum height along with motion angle and distance is figured out. Meanwhile, obstacles with different heights can be passed by executing a combination of the three different actions of the obstacle-crossing locomotion. The results of our analysis show that the locomotion can realize an obstacle-crossing ability with 170% of the height of CM. A prototype is manufactured to verify the envelop-climbing locomotion for obstacle-crossing (see video).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3284374</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3446-989X</orcidid><orcidid>https://orcid.org/0000-0003-3929-0415</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-08, Vol.8 (8), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10146454 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators Barriers Climbing Formability Kinematics Locomotion Mechanism Design Obstacle-Crossing Capability Path planning Planning Polyhedra Robot dynamics Robot kinematics Robots Rolling Robot Servomotors Shape Tetrahedra Tetrahedron Mechanism Triangles |
title | Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Envelop-Climbing%20Locomotion%20Planning%20and%20Capability%20Analysis%20of%20a%20Deformable%20Tetrahedron%20Rolling%20Robot&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhao,%20Ziming&rft.date=2023-08-01&rft.volume=8&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3284374&rft_dat=%3Cproquest_RIE%3E2828940523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828940523&rft_id=info:pmid/&rft_ieee_id=10146454&rfr_iscdi=true |