Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information

Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Liao, Zhuangtianyu, Zhang, Wenyi, Chu, Qingwei, Ding, Hao, Hu, Yuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Liao, Zhuangtianyu
Zhang, Wenyi
Chu, Qingwei
Ding, Hao
Hu, Yuxin
description Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.
doi_str_mv 10.1109/TGRS.2023.3280647
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10138026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10138026</ieee_id><sourcerecordid>2824113034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Z3eTbI61aixUhLbicdlsJmVL_tTdBPTbm9gePM3weG_m8SPkFugMgKYP22y9mTHK-IwzSWORnJEJRJEMh12ckwmFNA6ZTNklufJ-TymICJIJ-Xzrq876A5rO6SpYY912GGyw8bbZBcta7zB4wrzqnRuFjz953n_bymr3EzzqpggypwuLTRcsm7J1te5s21yTi1JXHm9Oc0q2L8_bxWu4es-Wi_kqNCwVXWh4kWsjykSjwVJImaTSxGmhIyrjXFPDKXBIBERJHnMoo1JHQiDqlBnJkU_J_fHswbVfPfpO7dveNcNHxSQTAJxyMbjg6DKu9d5hqQ7O1kN_BVSN-NSIT4341AnfkLk7Ziwi_vMDl5TF_BdL2myl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824113034</pqid></control><display><type>article</type><title>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhuangtianyu ; Zhang, Wenyi ; Chu, Qingwei ; Ding, Hao ; Hu, Yuxin</creator><creatorcontrib>Liao, Zhuangtianyu ; Zhang, Wenyi ; Chu, Qingwei ; Ding, Hao ; Hu, Yuxin</creatorcontrib><description>Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3280647</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>auxiliary band gradient information ; blind deblurring ; Computation ; Correlation ; Environmental monitoring ; Generative adversarial networks ; Hyperspectral imaging ; Image resolution ; Image restoration ; Incompatibility ; Kernel ; Methods ; Optimization ; Remote sensing ; Remote sensing image ; Sensors ; Sparsity ; Spectral bands ; Urban planning ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</citedby><cites>FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</cites><orcidid>0000-0003-0530-8488 ; 0009-0005-4406-3235 ; 0009-0001-1741-4985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10138026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10138026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhuangtianyu</creatorcontrib><creatorcontrib>Zhang, Wenyi</creatorcontrib><creatorcontrib>Chu, Qingwei</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><title>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.</description><subject>auxiliary band gradient information</subject><subject>blind deblurring</subject><subject>Computation</subject><subject>Correlation</subject><subject>Environmental monitoring</subject><subject>Generative adversarial networks</subject><subject>Hyperspectral imaging</subject><subject>Image resolution</subject><subject>Image restoration</subject><subject>Incompatibility</subject><subject>Kernel</subject><subject>Methods</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Remote sensing image</subject><subject>Sensors</subject><subject>Sparsity</subject><subject>Spectral bands</subject><subject>Urban planning</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Z3eTbI61aixUhLbicdlsJmVL_tTdBPTbm9gePM3weG_m8SPkFugMgKYP22y9mTHK-IwzSWORnJEJRJEMh12ckwmFNA6ZTNklufJ-TymICJIJ-Xzrq876A5rO6SpYY912GGyw8bbZBcta7zB4wrzqnRuFjz953n_bymr3EzzqpggypwuLTRcsm7J1te5s21yTi1JXHm9Oc0q2L8_bxWu4es-Wi_kqNCwVXWh4kWsjykSjwVJImaTSxGmhIyrjXFPDKXBIBERJHnMoo1JHQiDqlBnJkU_J_fHswbVfPfpO7dveNcNHxSQTAJxyMbjg6DKu9d5hqQ7O1kN_BVSN-NSIT4341AnfkLk7Ziwi_vMDl5TF_BdL2myl</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liao, Zhuangtianyu</creator><creator>Zhang, Wenyi</creator><creator>Chu, Qingwei</creator><creator>Ding, Hao</creator><creator>Hu, Yuxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0530-8488</orcidid><orcidid>https://orcid.org/0009-0005-4406-3235</orcidid><orcidid>https://orcid.org/0009-0001-1741-4985</orcidid></search><sort><creationdate>20230101</creationdate><title>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</title><author>Liao, Zhuangtianyu ; Zhang, Wenyi ; Chu, Qingwei ; Ding, Hao ; Hu, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>auxiliary band gradient information</topic><topic>blind deblurring</topic><topic>Computation</topic><topic>Correlation</topic><topic>Environmental monitoring</topic><topic>Generative adversarial networks</topic><topic>Hyperspectral imaging</topic><topic>Image resolution</topic><topic>Image restoration</topic><topic>Incompatibility</topic><topic>Kernel</topic><topic>Methods</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Remote sensing image</topic><topic>Sensors</topic><topic>Sparsity</topic><topic>Spectral bands</topic><topic>Urban planning</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhuangtianyu</creatorcontrib><creatorcontrib>Zhang, Wenyi</creatorcontrib><creatorcontrib>Chu, Qingwei</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhuangtianyu</au><au>Zhang, Wenyi</au><au>Chu, Qingwei</au><au>Ding, Hao</au><au>Hu, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3280647</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0530-8488</orcidid><orcidid>https://orcid.org/0009-0005-4406-3235</orcidid><orcidid>https://orcid.org/0009-0001-1741-4985</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10138026
source IEEE Electronic Library (IEL)
subjects auxiliary band gradient information
blind deblurring
Computation
Correlation
Environmental monitoring
Generative adversarial networks
Hyperspectral imaging
Image resolution
Image restoration
Incompatibility
Kernel
Methods
Optimization
Remote sensing
Remote sensing image
Sensors
Sparsity
Spectral bands
Urban planning
Weather forecasting
title Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multispectral%20Remote%20Sensing%20Image%20Deblurring%20Using%20Auxiliary%20Band%20Gradient%20Information&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liao,%20Zhuangtianyu&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3280647&rft_dat=%3Cproquest_RIE%3E2824113034%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824113034&rft_id=info:pmid/&rft_ieee_id=10138026&rfr_iscdi=true