Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information
Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Liao, Zhuangtianyu Zhang, Wenyi Chu, Qingwei Ding, Hao Hu, Yuxin |
description | Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur. |
doi_str_mv | 10.1109/TGRS.2023.3280647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10138026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10138026</ieee_id><sourcerecordid>2824113034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Z3eTbI61aixUhLbicdlsJmVL_tTdBPTbm9gePM3weG_m8SPkFugMgKYP22y9mTHK-IwzSWORnJEJRJEMh12ckwmFNA6ZTNklufJ-TymICJIJ-Xzrq876A5rO6SpYY912GGyw8bbZBcta7zB4wrzqnRuFjz953n_bymr3EzzqpggypwuLTRcsm7J1te5s21yTi1JXHm9Oc0q2L8_bxWu4es-Wi_kqNCwVXWh4kWsjykSjwVJImaTSxGmhIyrjXFPDKXBIBERJHnMoo1JHQiDqlBnJkU_J_fHswbVfPfpO7dveNcNHxSQTAJxyMbjg6DKu9d5hqQ7O1kN_BVSN-NSIT4341AnfkLk7Ziwi_vMDl5TF_BdL2myl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824113034</pqid></control><display><type>article</type><title>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhuangtianyu ; Zhang, Wenyi ; Chu, Qingwei ; Ding, Hao ; Hu, Yuxin</creator><creatorcontrib>Liao, Zhuangtianyu ; Zhang, Wenyi ; Chu, Qingwei ; Ding, Hao ; Hu, Yuxin</creatorcontrib><description>Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3280647</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>auxiliary band gradient information ; blind deblurring ; Computation ; Correlation ; Environmental monitoring ; Generative adversarial networks ; Hyperspectral imaging ; Image resolution ; Image restoration ; Incompatibility ; Kernel ; Methods ; Optimization ; Remote sensing ; Remote sensing image ; Sensors ; Sparsity ; Spectral bands ; Urban planning ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</citedby><cites>FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</cites><orcidid>0000-0003-0530-8488 ; 0009-0005-4406-3235 ; 0009-0001-1741-4985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10138026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10138026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhuangtianyu</creatorcontrib><creatorcontrib>Zhang, Wenyi</creatorcontrib><creatorcontrib>Chu, Qingwei</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><title>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.</description><subject>auxiliary band gradient information</subject><subject>blind deblurring</subject><subject>Computation</subject><subject>Correlation</subject><subject>Environmental monitoring</subject><subject>Generative adversarial networks</subject><subject>Hyperspectral imaging</subject><subject>Image resolution</subject><subject>Image restoration</subject><subject>Incompatibility</subject><subject>Kernel</subject><subject>Methods</subject><subject>Optimization</subject><subject>Remote sensing</subject><subject>Remote sensing image</subject><subject>Sensors</subject><subject>Sparsity</subject><subject>Spectral bands</subject><subject>Urban planning</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dl1Z3eTbI61aixUhLbicdlsJmVL_tTdBPTbm9gePM3weG_m8SPkFugMgKYP22y9mTHK-IwzSWORnJEJRJEMh12ckwmFNA6ZTNklufJ-TymICJIJ-Xzrq876A5rO6SpYY912GGyw8bbZBcta7zB4wrzqnRuFjz953n_bymr3EzzqpggypwuLTRcsm7J1te5s21yTi1JXHm9Oc0q2L8_bxWu4es-Wi_kqNCwVXWh4kWsjykSjwVJImaTSxGmhIyrjXFPDKXBIBERJHnMoo1JHQiDqlBnJkU_J_fHswbVfPfpO7dveNcNHxSQTAJxyMbjg6DKu9d5hqQ7O1kN_BVSN-NSIT4341AnfkLk7Ziwi_vMDl5TF_BdL2myl</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liao, Zhuangtianyu</creator><creator>Zhang, Wenyi</creator><creator>Chu, Qingwei</creator><creator>Ding, Hao</creator><creator>Hu, Yuxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0530-8488</orcidid><orcidid>https://orcid.org/0009-0005-4406-3235</orcidid><orcidid>https://orcid.org/0009-0001-1741-4985</orcidid></search><sort><creationdate>20230101</creationdate><title>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</title><author>Liao, Zhuangtianyu ; Zhang, Wenyi ; Chu, Qingwei ; Ding, Hao ; Hu, Yuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c3dbac4f7aecef488798c69da5086ba0c3013174157b631f5fa544eea92c83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>auxiliary band gradient information</topic><topic>blind deblurring</topic><topic>Computation</topic><topic>Correlation</topic><topic>Environmental monitoring</topic><topic>Generative adversarial networks</topic><topic>Hyperspectral imaging</topic><topic>Image resolution</topic><topic>Image restoration</topic><topic>Incompatibility</topic><topic>Kernel</topic><topic>Methods</topic><topic>Optimization</topic><topic>Remote sensing</topic><topic>Remote sensing image</topic><topic>Sensors</topic><topic>Sparsity</topic><topic>Spectral bands</topic><topic>Urban planning</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhuangtianyu</creatorcontrib><creatorcontrib>Zhang, Wenyi</creatorcontrib><creatorcontrib>Chu, Qingwei</creatorcontrib><creatorcontrib>Ding, Hao</creatorcontrib><creatorcontrib>Hu, Yuxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhuangtianyu</au><au>Zhang, Wenyi</au><au>Chu, Qingwei</au><au>Ding, Hao</au><au>Hu, Yuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Multispectral remote sensing images (RSI), including hyperspectral and multispectral images, contain adequate information of ground objects and areas and play important roles in environmental monitoring, weather forecasting, urban planning, etc. However, due to many inevitable external effects on the remote sensing pathway, remote sensing images are often degraded by blur. The fields of multispectral remote sensing image deblurring have witnessed great improvements in recent years, including both optimization-based and deep-learning-based methods. However, issues are to be addressed in the remote sensing image deblurring field, such as the incompatibility of general regularizations, lack of spectral correlations for multispectral RSIs, demands of blind deblurring for real world applications, and high costs of computation. To address these problems, we incorporate a novel prior exploiting gradient information similarity between different spectral bands, and we name it auxiliary band gradient information (ABGI) prior. We show that the ABGI prior is applicable to all gradient sparsity regularizations by a simple subtract-then-add step. Specifically, we apply ABGI prior to the patch-wise minimal pixel (PMP) prior based deblurring method, and we also prove that the PMP prior exhibits sparsity for clear natural RSIs. We estimate our method on remote sensing image datasets of different spectral types and geographic resolutions. Compared to other state-of-the-art deblurring methods, our method shows superior performance on both simulated and real world blur.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3280647</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0530-8488</orcidid><orcidid>https://orcid.org/0009-0005-4406-3235</orcidid><orcidid>https://orcid.org/0009-0001-1741-4985</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10138026 |
source | IEEE Electronic Library (IEL) |
subjects | auxiliary band gradient information blind deblurring Computation Correlation Environmental monitoring Generative adversarial networks Hyperspectral imaging Image resolution Image restoration Incompatibility Kernel Methods Optimization Remote sensing Remote sensing image Sensors Sparsity Spectral bands Urban planning Weather forecasting |
title | Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multispectral%20Remote%20Sensing%20Image%20Deblurring%20Using%20Auxiliary%20Band%20Gradient%20Information&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liao,%20Zhuangtianyu&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3280647&rft_dat=%3Cproquest_RIE%3E2824113034%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824113034&rft_id=info:pmid/&rft_ieee_id=10138026&rfr_iscdi=true |