A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition
High-quality environmental perceptions are crucial for self-driving cars. Integrating multiple sensors is the predominant research direction for enhancing the accuracy and resilience of autonomous driving systems. Millimeter-wave radar has recently gained attention from the academic community owing...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Lu, Guowei He, Zhenhua Zhang, Shengkai Huang, Yanqing Zhong, Yi Li, ZHUO Han, Yi |
description | High-quality environmental perceptions are crucial for self-driving cars. Integrating multiple sensors is the predominant research direction for enhancing the accuracy and resilience of autonomous driving systems. Millimeter-wave radar has recently gained attention from the academic community owing to its unique physical properties that complement other sensing modalities, such as vision. Unlike cameras and LIDAR, millimeter-wave radar is not affected by light or weather conditions, has a high penetration capability, and can operate day and night, making it an ideal sensor for object tracking and identification. However, the longer wavelengths of millimeter-wave signals present challenges, including sparse point clouds and susceptibility to multipath effects, which limit their sensing accuracies. To enhance the object recognition capability of millimeter-wave radar, we propose a GAN-based point cloud enhancement method that converts sparse point clouds into RF images with richer semantic information, ultimately improving the accuracy of tasks such as object detection and semantic segmentation. We evaluated our method on the CARRADA and nuScenes datasets, and the experimental results demonstrate that our approach improves the object classification accuracy by 14.01% and semantic segmentation by 4.88% compared to current state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2023.3280544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10137873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10137873</ieee_id><doaj_id>oai_doaj_org_article_bec037172b9640a5bd72b97ef50d65d9</doaj_id><sourcerecordid>2844896985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b6bb80318e9d9930884865549eda8e85f9c377106713e41e9fc310c2c0d089a03</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNCWFhjS_oH0Q9PkuK0uypEdj8nGQNCVpIG9CltZXHXdWIssH9-_ji0PJvuwyzMzuMkXxg8KSUtAXddNcPj4uSyjZkpUKBOdfitOSVnrBBKtOPs3fivNh2MBUaoKEPC2ea_I77nFL7jD_i550MZHV7iXFfejX5E8MfSbNNo6e1M6NyboDCT2pxxx3MYc9kgfrbSL37QZdJg_o4roPOcT-e_G1s9sBzz_6WfF0dfm3uVnc3l-vmvp24TjovGirtlXAqELttWagFFeVEFyjtwqV6LRjUlKoJGXIKerOMQqudOBBaQvsrFjNvj7ajXlJYWfTwUQbzDsQ09rYlIPbomnRAZNUlq2uOFjR-uMosRPgK-H15PVr9pr-fx1xyGYTx9RP55tSca50pZWYWGxmuRSHIWH3fysFc0zEzImYYyLmI5FJ9XNWBUT8pKBMKsnYGwDBhYY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844896985</pqid></control><display><type>article</type><title>A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lu, Guowei ; He, Zhenhua ; Zhang, Shengkai ; Huang, Yanqing ; Zhong, Yi ; Li, ZHUO ; Han, Yi</creator><creatorcontrib>Lu, Guowei ; He, Zhenhua ; Zhang, Shengkai ; Huang, Yanqing ; Zhong, Yi ; Li, ZHUO ; Han, Yi</creatorcontrib><description>High-quality environmental perceptions are crucial for self-driving cars. Integrating multiple sensors is the predominant research direction for enhancing the accuracy and resilience of autonomous driving systems. Millimeter-wave radar has recently gained attention from the academic community owing to its unique physical properties that complement other sensing modalities, such as vision. Unlike cameras and LIDAR, millimeter-wave radar is not affected by light or weather conditions, has a high penetration capability, and can operate day and night, making it an ideal sensor for object tracking and identification. However, the longer wavelengths of millimeter-wave signals present challenges, including sparse point clouds and susceptibility to multipath effects, which limit their sensing accuracies. To enhance the object recognition capability of millimeter-wave radar, we propose a GAN-based point cloud enhancement method that converts sparse point clouds into RF images with richer semantic information, ultimately improving the accuracy of tasks such as object detection and semantic segmentation. We evaluated our method on the CARRADA and nuScenes datasets, and the experimental results demonstrate that our approach improves the object classification accuracy by 14.01% and semantic segmentation by 4.88% compared to current state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3280544</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Automotive engineering ; Automotive radar ; Autonomous cars ; GAN ; Generative adversarial networks ; Image enhancement ; Image segmentation ; Laser radar ; Millimeter wave radar ; Millimeter waves ; Object recognition ; Physical properties ; Point cloud compression ; point clouds ; Radar tracking ; Semantic segmentation ; Semantics ; Weather</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b6bb80318e9d9930884865549eda8e85f9c377106713e41e9fc310c2c0d089a03</citedby><cites>FETCH-LOGICAL-c409t-b6bb80318e9d9930884865549eda8e85f9c377106713e41e9fc310c2c0d089a03</cites><orcidid>0000-0003-0154-4897 ; 0000-0002-6233-5362 ; 0000-0003-4669-9892 ; 0000-0003-4439-6353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10137873$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Lu, Guowei</creatorcontrib><creatorcontrib>He, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Shengkai</creatorcontrib><creatorcontrib>Huang, Yanqing</creatorcontrib><creatorcontrib>Zhong, Yi</creatorcontrib><creatorcontrib>Li, ZHUO</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><title>A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>High-quality environmental perceptions are crucial for self-driving cars. Integrating multiple sensors is the predominant research direction for enhancing the accuracy and resilience of autonomous driving systems. Millimeter-wave radar has recently gained attention from the academic community owing to its unique physical properties that complement other sensing modalities, such as vision. Unlike cameras and LIDAR, millimeter-wave radar is not affected by light or weather conditions, has a high penetration capability, and can operate day and night, making it an ideal sensor for object tracking and identification. However, the longer wavelengths of millimeter-wave signals present challenges, including sparse point clouds and susceptibility to multipath effects, which limit their sensing accuracies. To enhance the object recognition capability of millimeter-wave radar, we propose a GAN-based point cloud enhancement method that converts sparse point clouds into RF images with richer semantic information, ultimately improving the accuracy of tasks such as object detection and semantic segmentation. We evaluated our method on the CARRADA and nuScenes datasets, and the experimental results demonstrate that our approach improves the object classification accuracy by 14.01% and semantic segmentation by 4.88% compared to current state-of-the-art methods.</description><subject>Accuracy</subject><subject>Automotive engineering</subject><subject>Automotive radar</subject><subject>Autonomous cars</subject><subject>GAN</subject><subject>Generative adversarial networks</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Millimeter wave radar</subject><subject>Millimeter waves</subject><subject>Object recognition</subject><subject>Physical properties</subject><subject>Point cloud compression</subject><subject>point clouds</subject><subject>Radar tracking</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Weather</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNCWFhjS_oH0Q9PkuK0uypEdj8nGQNCVpIG9CltZXHXdWIssH9-_ji0PJvuwyzMzuMkXxg8KSUtAXddNcPj4uSyjZkpUKBOdfitOSVnrBBKtOPs3fivNh2MBUaoKEPC2ea_I77nFL7jD_i550MZHV7iXFfejX5E8MfSbNNo6e1M6NyboDCT2pxxx3MYc9kgfrbSL37QZdJg_o4roPOcT-e_G1s9sBzz_6WfF0dfm3uVnc3l-vmvp24TjovGirtlXAqELttWagFFeVEFyjtwqV6LRjUlKoJGXIKerOMQqudOBBaQvsrFjNvj7ajXlJYWfTwUQbzDsQ09rYlIPbomnRAZNUlq2uOFjR-uMosRPgK-H15PVr9pr-fx1xyGYTx9RP55tSca50pZWYWGxmuRSHIWH3fysFc0zEzImYYyLmI5FJ9XNWBUT8pKBMKsnYGwDBhYY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lu, Guowei</creator><creator>He, Zhenhua</creator><creator>Zhang, Shengkai</creator><creator>Huang, Yanqing</creator><creator>Zhong, Yi</creator><creator>Li, ZHUO</creator><creator>Han, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0154-4897</orcidid><orcidid>https://orcid.org/0000-0002-6233-5362</orcidid><orcidid>https://orcid.org/0000-0003-4669-9892</orcidid><orcidid>https://orcid.org/0000-0003-4439-6353</orcidid></search><sort><creationdate>20230101</creationdate><title>A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition</title><author>Lu, Guowei ; He, Zhenhua ; Zhang, Shengkai ; Huang, Yanqing ; Zhong, Yi ; Li, ZHUO ; Han, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b6bb80318e9d9930884865549eda8e85f9c377106713e41e9fc310c2c0d089a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Automotive engineering</topic><topic>Automotive radar</topic><topic>Autonomous cars</topic><topic>GAN</topic><topic>Generative adversarial networks</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Millimeter wave radar</topic><topic>Millimeter waves</topic><topic>Object recognition</topic><topic>Physical properties</topic><topic>Point cloud compression</topic><topic>point clouds</topic><topic>Radar tracking</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Guowei</creatorcontrib><creatorcontrib>He, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Shengkai</creatorcontrib><creatorcontrib>Huang, Yanqing</creatorcontrib><creatorcontrib>Zhong, Yi</creatorcontrib><creatorcontrib>Li, ZHUO</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Guowei</au><au>He, Zhenhua</au><au>Zhang, Shengkai</au><au>Huang, Yanqing</au><au>Zhong, Yi</au><au>Li, ZHUO</au><au>Han, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>High-quality environmental perceptions are crucial for self-driving cars. Integrating multiple sensors is the predominant research direction for enhancing the accuracy and resilience of autonomous driving systems. Millimeter-wave radar has recently gained attention from the academic community owing to its unique physical properties that complement other sensing modalities, such as vision. Unlike cameras and LIDAR, millimeter-wave radar is not affected by light or weather conditions, has a high penetration capability, and can operate day and night, making it an ideal sensor for object tracking and identification. However, the longer wavelengths of millimeter-wave signals present challenges, including sparse point clouds and susceptibility to multipath effects, which limit their sensing accuracies. To enhance the object recognition capability of millimeter-wave radar, we propose a GAN-based point cloud enhancement method that converts sparse point clouds into RF images with richer semantic information, ultimately improving the accuracy of tasks such as object detection and semantic segmentation. We evaluated our method on the CARRADA and nuScenes datasets, and the experimental results demonstrate that our approach improves the object classification accuracy by 14.01% and semantic segmentation by 4.88% compared to current state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3280544</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0154-4897</orcidid><orcidid>https://orcid.org/0000-0002-6233-5362</orcidid><orcidid>https://orcid.org/0000-0003-4669-9892</orcidid><orcidid>https://orcid.org/0000-0003-4439-6353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10137873 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Automotive engineering Automotive radar Autonomous cars GAN Generative adversarial networks Image enhancement Image segmentation Laser radar Millimeter wave radar Millimeter waves Object recognition Physical properties Point cloud compression point clouds Radar tracking Semantic segmentation Semantics Weather |
title | A Novel Method for Improving Point Cloud Accuracy in Automotive Radar Object Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Improving%20Point%20Cloud%20Accuracy%20in%20Automotive%20Radar%20Object%20Recognition&rft.jtitle=IEEE%20access&rft.au=Lu,%20Guowei&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3280544&rft_dat=%3Cproquest_ieee_%3E2844896985%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844896985&rft_id=info:pmid/&rft_ieee_id=10137873&rft_doaj_id=oai_doaj_org_article_bec037172b9640a5bd72b97ef50d65d9&rfr_iscdi=true |