Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability
Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necess...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on device and materials reliability 2023-09, Vol.23 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on device and materials reliability |
container_volume | 23 |
creator | Feng, Hua Wei, Debao Wang, Yongchao Song, Yu Piao, Zhelong Qiao, Liyan |
description | Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%. |
doi_str_mv | 10.1109/TDMR.2023.3280262 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10136839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136839</ieee_id><sourcerecordid>2861453879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</originalsourceid><addsrcrecordid>eNpNUE1Pg0AUJEYTa_UHmHjYxDN1v1mODbXahNakVq-bBR50K4W6UA3_Xkh78DJvDjPz3hvPuyd4QggOnzaz5XpCMWUTRhWmkl54IyKE8qkI-OXAGfY5U-rau2maHcYkDIQceV-xLbbtLwyI1mCyHnJwUKWAPuuyNQWgyJQ2caa1dYXe255A0aG8dmixP7j6x1YFYv4MbeIIraarGZqXptmiJexr1_VxpTWJLW3b3XpXuSkbuDvPsfcxf95Er3789rKIprGf0pC3Pg8SEIBT6B-BIEuYBCEzCsyIzHCemZTjBAPJmJFcYJarkOWpDPI0l1IoYGPv8ZTbX_d9hKbVu_roqn6lpkoSLpgKwl5FTqrU1U3jINcHZ_fGdZpgPXSqh0710Kk-d9p7Hk4eCwD_9IRJxUL2B2J5cvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2861453879</pqid></control><display><type>magazinearticle</type><title>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Hua ; Wei, Debao ; Wang, Yongchao ; Song, Yu ; Piao, Zhelong ; Qiao, Liyan</creator><creatorcontrib>Feng, Hua ; Wei, Debao ; Wang, Yongchao ; Song, Yu ; Piao, Zhelong ; Qiao, Liyan</creatorcontrib><description>Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.</description><identifier>ISSN: 1530-4388</identifier><identifier>EISSN: 1558-2574</identifier><identifier>DOI: 10.1109/TDMR.2023.3280262</identifier><identifier>CODEN: ITDMA2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D NAND Flash ; Adaptation models ; Bit error rate ; Calibration ; Data centers ; Errors ; Flash memories ; Flash memory (computers) ; Interlayers ; Lightweight ; Materials reliability ; Memory test ; Optimization ; Production costs ; Read reference voltage ; Reliability ; Storage capacity ; Storage reliability ; Three-dimensional displays ; Threshold voltage ; Voltage control</subject><ispartof>IEEE transactions on device and materials reliability, 2023-09, Vol.23 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</citedby><cites>FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</cites><orcidid>0000-0002-8364-2062 ; 0000-0002-8220-7990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>778,782,794,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Hua</creatorcontrib><creatorcontrib>Wei, Debao</creatorcontrib><creatorcontrib>Wang, Yongchao</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Piao, Zhelong</creatorcontrib><creatorcontrib>Qiao, Liyan</creatorcontrib><title>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</title><title>IEEE transactions on device and materials reliability</title><addtitle>TDMR</addtitle><description>Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.</description><subject>3-D NAND Flash</subject><subject>Adaptation models</subject><subject>Bit error rate</subject><subject>Calibration</subject><subject>Data centers</subject><subject>Errors</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>Interlayers</subject><subject>Lightweight</subject><subject>Materials reliability</subject><subject>Memory test</subject><subject>Optimization</subject><subject>Production costs</subject><subject>Read reference voltage</subject><subject>Reliability</subject><subject>Storage capacity</subject><subject>Storage reliability</subject><subject>Three-dimensional displays</subject><subject>Threshold voltage</subject><subject>Voltage control</subject><issn>1530-4388</issn><issn>1558-2574</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Pg0AUJEYTa_UHmHjYxDN1v1mODbXahNakVq-bBR50K4W6UA3_Xkh78DJvDjPz3hvPuyd4QggOnzaz5XpCMWUTRhWmkl54IyKE8qkI-OXAGfY5U-rau2maHcYkDIQceV-xLbbtLwyI1mCyHnJwUKWAPuuyNQWgyJQ2caa1dYXe255A0aG8dmixP7j6x1YFYv4MbeIIraarGZqXptmiJexr1_VxpTWJLW3b3XpXuSkbuDvPsfcxf95Er3789rKIprGf0pC3Pg8SEIBT6B-BIEuYBCEzCsyIzHCemZTjBAPJmJFcYJarkOWpDPI0l1IoYGPv8ZTbX_d9hKbVu_roqn6lpkoSLpgKwl5FTqrU1U3jINcHZ_fGdZpgPXSqh0710Kk-d9p7Hk4eCwD_9IRJxUL2B2J5cvU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Feng, Hua</creator><creator>Wei, Debao</creator><creator>Wang, Yongchao</creator><creator>Song, Yu</creator><creator>Piao, Zhelong</creator><creator>Qiao, Liyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8364-2062</orcidid><orcidid>https://orcid.org/0000-0002-8220-7990</orcidid></search><sort><creationdate>20230901</creationdate><title>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</title><author>Feng, Hua ; Wei, Debao ; Wang, Yongchao ; Song, Yu ; Piao, Zhelong ; Qiao, Liyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D NAND Flash</topic><topic>Adaptation models</topic><topic>Bit error rate</topic><topic>Calibration</topic><topic>Data centers</topic><topic>Errors</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>Interlayers</topic><topic>Lightweight</topic><topic>Materials reliability</topic><topic>Memory test</topic><topic>Optimization</topic><topic>Production costs</topic><topic>Read reference voltage</topic><topic>Reliability</topic><topic>Storage capacity</topic><topic>Storage reliability</topic><topic>Three-dimensional displays</topic><topic>Threshold voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Hua</creatorcontrib><creatorcontrib>Wei, Debao</creatorcontrib><creatorcontrib>Wang, Yongchao</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Piao, Zhelong</creatorcontrib><creatorcontrib>Qiao, Liyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on device and materials reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Hua</au><au>Wei, Debao</au><au>Wang, Yongchao</au><au>Song, Yu</au><au>Piao, Zhelong</au><au>Qiao, Liyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</atitle><jtitle>IEEE transactions on device and materials reliability</jtitle><stitle>TDMR</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-4388</issn><eissn>1558-2574</eissn><coden>ITDMA2</coden><abstract>Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDMR.2023.3280262</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8364-2062</orcidid><orcidid>https://orcid.org/0000-0002-8220-7990</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-4388 |
ispartof | IEEE transactions on device and materials reliability, 2023-09, Vol.23 (3), p.1-1 |
issn | 1530-4388 1558-2574 |
language | eng |
recordid | cdi_ieee_primary_10136839 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D NAND Flash Adaptation models Bit error rate Calibration Data centers Errors Flash memories Flash memory (computers) Interlayers Lightweight Materials reliability Memory test Optimization Production costs Read reference voltage Reliability Storage capacity Storage reliability Three-dimensional displays Threshold voltage Voltage control |
title | Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Read%20Reference%20Voltage%20Calibration%20Strategy%20for%20Improving%203-D%20TLC%20NAND%20Flash%20Memory%20Reliability&rft.jtitle=IEEE%20transactions%20on%20device%20and%20materials%20reliability&rft.au=Feng,%20Hua&rft.date=2023-09-01&rft.volume=23&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-4388&rft.eissn=1558-2574&rft.coden=ITDMA2&rft_id=info:doi/10.1109/TDMR.2023.3280262&rft_dat=%3Cproquest_RIE%3E2861453879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861453879&rft_id=info:pmid/&rft_ieee_id=10136839&rfr_iscdi=true |