Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability

Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on device and materials reliability 2023-09, Vol.23 (3), p.1-1
Hauptverfasser: Feng, Hua, Wei, Debao, Wang, Yongchao, Song, Yu, Piao, Zhelong, Qiao, Liyan
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on device and materials reliability
container_volume 23
creator Feng, Hua
Wei, Debao
Wang, Yongchao
Song, Yu
Piao, Zhelong
Qiao, Liyan
description Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.
doi_str_mv 10.1109/TDMR.2023.3280262
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10136839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136839</ieee_id><sourcerecordid>2861453879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</originalsourceid><addsrcrecordid>eNpNUE1Pg0AUJEYTa_UHmHjYxDN1v1mODbXahNakVq-bBR50K4W6UA3_Xkh78DJvDjPz3hvPuyd4QggOnzaz5XpCMWUTRhWmkl54IyKE8qkI-OXAGfY5U-rau2maHcYkDIQceV-xLbbtLwyI1mCyHnJwUKWAPuuyNQWgyJQ2caa1dYXe255A0aG8dmixP7j6x1YFYv4MbeIIraarGZqXptmiJexr1_VxpTWJLW3b3XpXuSkbuDvPsfcxf95Er3789rKIprGf0pC3Pg8SEIBT6B-BIEuYBCEzCsyIzHCemZTjBAPJmJFcYJarkOWpDPI0l1IoYGPv8ZTbX_d9hKbVu_roqn6lpkoSLpgKwl5FTqrU1U3jINcHZ_fGdZpgPXSqh0710Kk-d9p7Hk4eCwD_9IRJxUL2B2J5cvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2861453879</pqid></control><display><type>magazinearticle</type><title>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Hua ; Wei, Debao ; Wang, Yongchao ; Song, Yu ; Piao, Zhelong ; Qiao, Liyan</creator><creatorcontrib>Feng, Hua ; Wei, Debao ; Wang, Yongchao ; Song, Yu ; Piao, Zhelong ; Qiao, Liyan</creatorcontrib><description>Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.</description><identifier>ISSN: 1530-4388</identifier><identifier>EISSN: 1558-2574</identifier><identifier>DOI: 10.1109/TDMR.2023.3280262</identifier><identifier>CODEN: ITDMA2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D NAND Flash ; Adaptation models ; Bit error rate ; Calibration ; Data centers ; Errors ; Flash memories ; Flash memory (computers) ; Interlayers ; Lightweight ; Materials reliability ; Memory test ; Optimization ; Production costs ; Read reference voltage ; Reliability ; Storage capacity ; Storage reliability ; Three-dimensional displays ; Threshold voltage ; Voltage control</subject><ispartof>IEEE transactions on device and materials reliability, 2023-09, Vol.23 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</citedby><cites>FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</cites><orcidid>0000-0002-8364-2062 ; 0000-0002-8220-7990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>778,782,794,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Hua</creatorcontrib><creatorcontrib>Wei, Debao</creatorcontrib><creatorcontrib>Wang, Yongchao</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Piao, Zhelong</creatorcontrib><creatorcontrib>Qiao, Liyan</creatorcontrib><title>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</title><title>IEEE transactions on device and materials reliability</title><addtitle>TDMR</addtitle><description>Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.</description><subject>3-D NAND Flash</subject><subject>Adaptation models</subject><subject>Bit error rate</subject><subject>Calibration</subject><subject>Data centers</subject><subject>Errors</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>Interlayers</subject><subject>Lightweight</subject><subject>Materials reliability</subject><subject>Memory test</subject><subject>Optimization</subject><subject>Production costs</subject><subject>Read reference voltage</subject><subject>Reliability</subject><subject>Storage capacity</subject><subject>Storage reliability</subject><subject>Three-dimensional displays</subject><subject>Threshold voltage</subject><subject>Voltage control</subject><issn>1530-4388</issn><issn>1558-2574</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2023</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Pg0AUJEYTa_UHmHjYxDN1v1mODbXahNakVq-bBR50K4W6UA3_Xkh78DJvDjPz3hvPuyd4QggOnzaz5XpCMWUTRhWmkl54IyKE8qkI-OXAGfY5U-rau2maHcYkDIQceV-xLbbtLwyI1mCyHnJwUKWAPuuyNQWgyJQ2caa1dYXe255A0aG8dmixP7j6x1YFYv4MbeIIraarGZqXptmiJexr1_VxpTWJLW3b3XpXuSkbuDvPsfcxf95Er3789rKIprGf0pC3Pg8SEIBT6B-BIEuYBCEzCsyIzHCemZTjBAPJmJFcYJarkOWpDPI0l1IoYGPv8ZTbX_d9hKbVu_roqn6lpkoSLpgKwl5FTqrU1U3jINcHZ_fGdZpgPXSqh0710Kk-d9p7Hk4eCwD_9IRJxUL2B2J5cvU</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Feng, Hua</creator><creator>Wei, Debao</creator><creator>Wang, Yongchao</creator><creator>Song, Yu</creator><creator>Piao, Zhelong</creator><creator>Qiao, Liyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8364-2062</orcidid><orcidid>https://orcid.org/0000-0002-8220-7990</orcidid></search><sort><creationdate>20230901</creationdate><title>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</title><author>Feng, Hua ; Wei, Debao ; Wang, Yongchao ; Song, Yu ; Piao, Zhelong ; Qiao, Liyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-47be5e0ce280e7db36e56d2e3a5da44dac40b0e1d3a64503f893fc67fcf6658e3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D NAND Flash</topic><topic>Adaptation models</topic><topic>Bit error rate</topic><topic>Calibration</topic><topic>Data centers</topic><topic>Errors</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>Interlayers</topic><topic>Lightweight</topic><topic>Materials reliability</topic><topic>Memory test</topic><topic>Optimization</topic><topic>Production costs</topic><topic>Read reference voltage</topic><topic>Reliability</topic><topic>Storage capacity</topic><topic>Storage reliability</topic><topic>Three-dimensional displays</topic><topic>Threshold voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Hua</creatorcontrib><creatorcontrib>Wei, Debao</creatorcontrib><creatorcontrib>Wang, Yongchao</creatorcontrib><creatorcontrib>Song, Yu</creatorcontrib><creatorcontrib>Piao, Zhelong</creatorcontrib><creatorcontrib>Qiao, Liyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on device and materials reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Hua</au><au>Wei, Debao</au><au>Wang, Yongchao</au><au>Song, Yu</au><au>Piao, Zhelong</au><au>Qiao, Liyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability</atitle><jtitle>IEEE transactions on device and materials reliability</jtitle><stitle>TDMR</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>23</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-4388</issn><eissn>1558-2574</eissn><coden>ITDMA2</coden><abstract>Flash memory has gradually become the dominant storage device in the consumer market and data centers since the storage capacity increases and production costs decline. Unfortunately, as the bit density of flash memory increased, the severity of reliability issues has escalated. Read retry is necessary to recover high bit-error-rate flash data; however, read retry requires the flash to perform sequential read operations, which significantly increases read latency. To improve the flash memory read performance, a reliable adaptive optimization strategy for flash memory read reference voltage (RRV) is urgently needed. In this paper, we performed a full range of error characterization tests on three-dimensional (3-D) triple-level cell (TLC) flash memory, focusing on the effects of retention leakage, P/E wear, and interlayer variation on the threshold voltage. Finally, a lightweight flash memory RRV calibration strategy was constructed. The experiment results show that the predicted RRV using the proposed strategy is very close to the actual optimal RRV, reducing the raw bit error rate (RBER) of the same model of flash memory by up to 93.2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDMR.2023.3280262</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8364-2062</orcidid><orcidid>https://orcid.org/0000-0002-8220-7990</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-4388
ispartof IEEE transactions on device and materials reliability, 2023-09, Vol.23 (3), p.1-1
issn 1530-4388
1558-2574
language eng
recordid cdi_ieee_primary_10136839
source IEEE Electronic Library (IEL)
subjects 3-D NAND Flash
Adaptation models
Bit error rate
Calibration
Data centers
Errors
Flash memories
Flash memory (computers)
Interlayers
Lightweight
Materials reliability
Memory test
Optimization
Production costs
Read reference voltage
Reliability
Storage capacity
Storage reliability
Three-dimensional displays
Threshold voltage
Voltage control
title Lightweight Read Reference Voltage Calibration Strategy for Improving 3-D TLC NAND Flash Memory Reliability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Read%20Reference%20Voltage%20Calibration%20Strategy%20for%20Improving%203-D%20TLC%20NAND%20Flash%20Memory%20Reliability&rft.jtitle=IEEE%20transactions%20on%20device%20and%20materials%20reliability&rft.au=Feng,%20Hua&rft.date=2023-09-01&rft.volume=23&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-4388&rft.eissn=1558-2574&rft.coden=ITDMA2&rft_id=info:doi/10.1109/TDMR.2023.3280262&rft_dat=%3Cproquest_RIE%3E2861453879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861453879&rft_id=info:pmid/&rft_ieee_id=10136839&rfr_iscdi=true