Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection

Source-free domain adaptation (SFDA) aims to adapt a lightweight pretrained source model to unlabeled new domains without the original labeled source data. Due to the privacy of patients and storage consumption concerns, SFDA is a more practical setting for building a generalized model in medical ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-06, Vol.35 (6), p.7287-7298
Hauptverfasser: Liu, Xinyu, Li, Wuyang, Yuan, Yixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7298
container_issue 6
container_start_page 7287
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Liu, Xinyu
Li, Wuyang
Yuan, Yixuan
description Source-free domain adaptation (SFDA) aims to adapt a lightweight pretrained source model to unlabeled new domains without the original labeled source data. Due to the privacy of patients and storage consumption concerns, SFDA is a more practical setting for building a generalized model in medical object detection. Existing methods usually apply the vanilla pseudo-labeling technique, while neglecting the bias issues in SFDA, leading to limited adaptation performance. To this end, we systematically analyze the biases in SFDA medical object detection by constructing a structural causal model (SCM) and propose an unbiased SFDA framework dubbed decoupled unbiased teacher (DUT). Based on the SCM, we derive that the confounding effect causes biases in the SFDA medical object detection task at the sample level, feature level, and prediction level. To prevent the model from emphasizing easy object patterns in the biased dataset, a dual invariance assessment (DIA) strategy is devised to generate counterfactual synthetics. The synthetics are based on unbiased invariant samples in both discrimination and semantic perspectives. To alleviate overfitting to domain-specific features in SFDA, we design a cross-domain feature intervention (CFI) module to explicitly deconfound the domain-specific prior with feature intervention and obtain unbiased features. Besides, we establish a correspondence supervision prioritization (CSP) strategy for addressing the prediction bias caused by coarse pseudo-labels by sample prioritizing and robust box supervision. Through extensive experiments on multiple SFDA medical object detection scenarios, DUT yields superior performance over previous state-of-the-art unsupervised domain adaptation (UDA) and SFDA counterparts, demonstrating the significance of addressing the bias issues in this challenging task. The code is available at https://github.com/CUHK-AIM-Group/Decoupled-Unbiased-Teacher .
doi_str_mv 10.1109/TNNLS.2023.3272389
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10132405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10132405</ieee_id><sourcerecordid>3064715180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-3565c9825845c5238474dead427be11fa3e11c9d15cf1176b655b7a9c5b3e8643</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoKrp_QEQKXrx0TSZf7VFcv2B1D7uCt5CmU-zSbdekFfz3RncVcQ4z7-GZN5OXkBNGx4zR_HLx9DSdj4ECH3PQwLN8hxwCU5BGne3-av1yQEYhLGksRaUS-T454BpAcAWHZD5B1w3rBsvkuS1qG6JYoHWv6JOq88m8G7zD9NYjJpNuZes2uSrtuq_fMXnEsna2SWbFEl2fTLCPo-7aY7JX2SbgaDuPyPPtzeL6Pp3O7h6ur6ap4xL6lEslXZ6BzIR0Ml4ttCjRlgJ0gYxVlsfu8pJJVzGmVaGkLLTNnSw4ZkrwI3Kx8V377m3A0JtVHRw2jW2xG4KBjOWg4wMQ0fN_6DJ-rI3XGU6V0EyyjEYKNpTzXQgeK7P29cr6D8Oo-UrdfKduvlI329Tj0tnWeihWWP6u_GQcgdMNUCPiH0fGQVDJPwHYrIQO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064715180</pqid></control><display><type>article</type><title>Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xinyu ; Li, Wuyang ; Yuan, Yixuan</creator><creatorcontrib>Liu, Xinyu ; Li, Wuyang ; Yuan, Yixuan</creatorcontrib><description>Source-free domain adaptation (SFDA) aims to adapt a lightweight pretrained source model to unlabeled new domains without the original labeled source data. Due to the privacy of patients and storage consumption concerns, SFDA is a more practical setting for building a generalized model in medical object detection. Existing methods usually apply the vanilla pseudo-labeling technique, while neglecting the bias issues in SFDA, leading to limited adaptation performance. To this end, we systematically analyze the biases in SFDA medical object detection by constructing a structural causal model (SCM) and propose an unbiased SFDA framework dubbed decoupled unbiased teacher (DUT). Based on the SCM, we derive that the confounding effect causes biases in the SFDA medical object detection task at the sample level, feature level, and prediction level. To prevent the model from emphasizing easy object patterns in the biased dataset, a dual invariance assessment (DIA) strategy is devised to generate counterfactual synthetics. The synthetics are based on unbiased invariant samples in both discrimination and semantic perspectives. To alleviate overfitting to domain-specific features in SFDA, we design a cross-domain feature intervention (CFI) module to explicitly deconfound the domain-specific prior with feature intervention and obtain unbiased features. Besides, we establish a correspondence supervision prioritization (CSP) strategy for addressing the prediction bias caused by coarse pseudo-labels by sample prioritizing and robust box supervision. Through extensive experiments on multiple SFDA medical object detection scenarios, DUT yields superior performance over previous state-of-the-art unsupervised domain adaptation (UDA) and SFDA counterparts, demonstrating the significance of addressing the bias issues in this challenging task. The code is available at https://github.com/CUHK-AIM-Group/Decoupled-Unbiased-Teacher .</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3272389</identifier><identifier>PMID: 37224362</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Bias ; Data models ; Feature extraction ; Humans ; Labels ; Machine Learning ; Medical diagnostic imaging ; Medical object detection ; Neural Networks, Computer ; Object detection ; Object recognition ; Pattern Recognition, Automated - methods ; Predictive models ; self-supervised learning ; source-free domain adaptation (SFDA) ; structural causal model (SCM) ; Task analysis ; Teachers</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-06, Vol.35 (6), p.7287-7298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-3565c9825845c5238474dead427be11fa3e11c9d15cf1176b655b7a9c5b3e8643</citedby><orcidid>0000-0002-5180-6958 ; 0000-0002-7338-9251 ; 0000-0002-0853-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10132405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10132405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37224362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Li, Wuyang</creatorcontrib><creatorcontrib>Yuan, Yixuan</creatorcontrib><title>Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Source-free domain adaptation (SFDA) aims to adapt a lightweight pretrained source model to unlabeled new domains without the original labeled source data. Due to the privacy of patients and storage consumption concerns, SFDA is a more practical setting for building a generalized model in medical object detection. Existing methods usually apply the vanilla pseudo-labeling technique, while neglecting the bias issues in SFDA, leading to limited adaptation performance. To this end, we systematically analyze the biases in SFDA medical object detection by constructing a structural causal model (SCM) and propose an unbiased SFDA framework dubbed decoupled unbiased teacher (DUT). Based on the SCM, we derive that the confounding effect causes biases in the SFDA medical object detection task at the sample level, feature level, and prediction level. To prevent the model from emphasizing easy object patterns in the biased dataset, a dual invariance assessment (DIA) strategy is devised to generate counterfactual synthetics. The synthetics are based on unbiased invariant samples in both discrimination and semantic perspectives. To alleviate overfitting to domain-specific features in SFDA, we design a cross-domain feature intervention (CFI) module to explicitly deconfound the domain-specific prior with feature intervention and obtain unbiased features. Besides, we establish a correspondence supervision prioritization (CSP) strategy for addressing the prediction bias caused by coarse pseudo-labels by sample prioritizing and robust box supervision. Through extensive experiments on multiple SFDA medical object detection scenarios, DUT yields superior performance over previous state-of-the-art unsupervised domain adaptation (UDA) and SFDA counterparts, demonstrating the significance of addressing the bias issues in this challenging task. The code is available at https://github.com/CUHK-AIM-Group/Decoupled-Unbiased-Teacher .</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Labels</subject><subject>Machine Learning</subject><subject>Medical diagnostic imaging</subject><subject>Medical object detection</subject><subject>Neural Networks, Computer</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive models</subject><subject>self-supervised learning</subject><subject>source-free domain adaptation (SFDA)</subject><subject>structural causal model (SCM)</subject><subject>Task analysis</subject><subject>Teachers</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LxDAQhoMoKrp_QEQKXrx0TSZf7VFcv2B1D7uCt5CmU-zSbdekFfz3RncVcQ4z7-GZN5OXkBNGx4zR_HLx9DSdj4ECH3PQwLN8hxwCU5BGne3-av1yQEYhLGksRaUS-T454BpAcAWHZD5B1w3rBsvkuS1qG6JYoHWv6JOq88m8G7zD9NYjJpNuZes2uSrtuq_fMXnEsna2SWbFEl2fTLCPo-7aY7JX2SbgaDuPyPPtzeL6Pp3O7h6ur6ap4xL6lEslXZ6BzIR0Ml4ttCjRlgJ0gYxVlsfu8pJJVzGmVaGkLLTNnSw4ZkrwI3Kx8V377m3A0JtVHRw2jW2xG4KBjOWg4wMQ0fN_6DJ-rI3XGU6V0EyyjEYKNpTzXQgeK7P29cr6D8Oo-UrdfKduvlI329Tj0tnWeihWWP6u_GQcgdMNUCPiH0fGQVDJPwHYrIQO</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Xinyu</creator><creator>Li, Wuyang</creator><creator>Yuan, Yixuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5180-6958</orcidid><orcidid>https://orcid.org/0000-0002-7338-9251</orcidid><orcidid>https://orcid.org/0000-0002-0853-6948</orcidid></search><sort><creationdate>20240601</creationdate><title>Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection</title><author>Liu, Xinyu ; Li, Wuyang ; Yuan, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-3565c9825845c5238474dead427be11fa3e11c9d15cf1176b655b7a9c5b3e8643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Labels</topic><topic>Machine Learning</topic><topic>Medical diagnostic imaging</topic><topic>Medical object detection</topic><topic>Neural Networks, Computer</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive models</topic><topic>self-supervised learning</topic><topic>source-free domain adaptation (SFDA)</topic><topic>structural causal model (SCM)</topic><topic>Task analysis</topic><topic>Teachers</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Li, Wuyang</creatorcontrib><creatorcontrib>Yuan, Yixuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xinyu</au><au>Li, Wuyang</au><au>Yuan, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>35</volume><issue>6</issue><spage>7287</spage><epage>7298</epage><pages>7287-7298</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Source-free domain adaptation (SFDA) aims to adapt a lightweight pretrained source model to unlabeled new domains without the original labeled source data. Due to the privacy of patients and storage consumption concerns, SFDA is a more practical setting for building a generalized model in medical object detection. Existing methods usually apply the vanilla pseudo-labeling technique, while neglecting the bias issues in SFDA, leading to limited adaptation performance. To this end, we systematically analyze the biases in SFDA medical object detection by constructing a structural causal model (SCM) and propose an unbiased SFDA framework dubbed decoupled unbiased teacher (DUT). Based on the SCM, we derive that the confounding effect causes biases in the SFDA medical object detection task at the sample level, feature level, and prediction level. To prevent the model from emphasizing easy object patterns in the biased dataset, a dual invariance assessment (DIA) strategy is devised to generate counterfactual synthetics. The synthetics are based on unbiased invariant samples in both discrimination and semantic perspectives. To alleviate overfitting to domain-specific features in SFDA, we design a cross-domain feature intervention (CFI) module to explicitly deconfound the domain-specific prior with feature intervention and obtain unbiased features. Besides, we establish a correspondence supervision prioritization (CSP) strategy for addressing the prediction bias caused by coarse pseudo-labels by sample prioritizing and robust box supervision. Through extensive experiments on multiple SFDA medical object detection scenarios, DUT yields superior performance over previous state-of-the-art unsupervised domain adaptation (UDA) and SFDA counterparts, demonstrating the significance of addressing the bias issues in this challenging task. The code is available at https://github.com/CUHK-AIM-Group/Decoupled-Unbiased-Teacher .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37224362</pmid><doi>10.1109/TNNLS.2023.3272389</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5180-6958</orcidid><orcidid>https://orcid.org/0000-0002-7338-9251</orcidid><orcidid>https://orcid.org/0000-0002-0853-6948</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-06, Vol.35 (6), p.7287-7298
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_ieee_primary_10132405
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Algorithms
Bias
Data models
Feature extraction
Humans
Labels
Machine Learning
Medical diagnostic imaging
Medical object detection
Neural Networks, Computer
Object detection
Object recognition
Pattern Recognition, Automated - methods
Predictive models
self-supervised learning
source-free domain adaptation (SFDA)
structural causal model (SCM)
Task analysis
Teachers
title Decoupled Unbiased Teacher for Source-Free Domain Adaptive Medical Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupled%20Unbiased%20Teacher%20for%20Source-Free%20Domain%20Adaptive%20Medical%20Object%20Detection&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Xinyu&rft.date=2024-06-01&rft.volume=35&rft.issue=6&rft.spage=7287&rft.epage=7298&rft.pages=7287-7298&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3272389&rft_dat=%3Cproquest_RIE%3E3064715180%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064715180&rft_id=info:pmid/37224362&rft_ieee_id=10132405&rfr_iscdi=true