Domain knowledge informed multitask learning for landslide induced seismic classification

Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Hauptverfasser: Li, Jiangfeng, Ye, Minxiang, Stankovic, Lina, Stankovic, Vladimir, Pytharouli, Stella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Li, Jiangfeng
Ye, Minxiang
Stankovic, Lina
Stankovic, Vladimir
Pytharouli, Stella
description Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.
doi_str_mv 10.1109/LGRS.2023.3279068
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10131939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10131939</ieee_id><sourcerecordid>2825602761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrJh-72aP4UYWC4AfoKaTJbEm7m63JFvHfu0t78DQD87wzzEPIJdAZAK1uFvPXtxmjjM84KytaqCMyASlVTmUJx2MvZC4r9XlKzlJaU8qEUuWEfN13rfEh24Tup0G3wsyHuostuqzdNb3vTdpkDZoYfFhlwyRrTHCp8W4k3c4OYEKfWm8z25iUfO2t6X0XzslJbZqEF4c6JR-PD-93T_niZf58d7vILedln7NKAKBhuCwkX7La8aJGYGCN4kIUIBTnKPgSBS2xtBJUQYVDK4dnnWDAp-R6v3cbu-8dpl6vu10Mw0nNFJMFZWUxUrCnbOxSiljrbfStib8aqB4N6tGgHg3qg8Ehc7XPeET8xwOHilf8DwbDbXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825602761</pqid></control><display><type>article</type><title>Domain knowledge informed multitask learning for landslide induced seismic classification</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jiangfeng ; Ye, Minxiang ; Stankovic, Lina ; Stankovic, Vladimir ; Pytharouli, Stella</creator><creatorcontrib>Li, Jiangfeng ; Ye, Minxiang ; Stankovic, Lina ; Stankovic, Vladimir ; Pytharouli, Stella</creatorcontrib><description>Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3279068</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anthropogenic factors ; Artificial neural networks ; Classification ; Earthquakes ; Feature extraction ; Feature maps ; landslide-induced seismic classification ; Landslides ; Learning ; Machine learning ; Mathematical models ; Monitoring ; multitask learning ; Neural networks ; P waves ; P-wave velocity ; Physical characteristics ; Physical properties ; Recording ; Rock falls ; Rockfall ; Seismic activity ; Seismic propagation ; Seismic velocities ; Seismic wave equation ; Seismic wave propagation ; Seismic wave velocities ; Seismic waves ; Signal classification ; Signal representation ; Solid modeling ; Wave equations ; Wave propagation ; Wave velocity</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</citedby><cites>FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</cites><orcidid>0000-0002-8112-1976 ; 0000-0002-1075-2420 ; 0000-0002-2899-1518 ; 0000-0003-0083-7145 ; 0000-0001-9848-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10131939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10131939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jiangfeng</creatorcontrib><creatorcontrib>Ye, Minxiang</creatorcontrib><creatorcontrib>Stankovic, Lina</creatorcontrib><creatorcontrib>Stankovic, Vladimir</creatorcontrib><creatorcontrib>Pytharouli, Stella</creatorcontrib><title>Domain knowledge informed multitask learning for landslide induced seismic classification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.</description><subject>Anthropogenic factors</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Earthquakes</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>landslide-induced seismic classification</subject><subject>Landslides</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>multitask learning</subject><subject>Neural networks</subject><subject>P waves</subject><subject>P-wave velocity</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Recording</subject><subject>Rock falls</subject><subject>Rockfall</subject><subject>Seismic activity</subject><subject>Seismic propagation</subject><subject>Seismic velocities</subject><subject>Seismic wave equation</subject><subject>Seismic wave propagation</subject><subject>Seismic wave velocities</subject><subject>Seismic waves</subject><subject>Signal classification</subject><subject>Signal representation</subject><subject>Solid modeling</subject><subject>Wave equations</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrJh-72aP4UYWC4AfoKaTJbEm7m63JFvHfu0t78DQD87wzzEPIJdAZAK1uFvPXtxmjjM84KytaqCMyASlVTmUJx2MvZC4r9XlKzlJaU8qEUuWEfN13rfEh24Tup0G3wsyHuostuqzdNb3vTdpkDZoYfFhlwyRrTHCp8W4k3c4OYEKfWm8z25iUfO2t6X0XzslJbZqEF4c6JR-PD-93T_niZf58d7vILedln7NKAKBhuCwkX7La8aJGYGCN4kIUIBTnKPgSBS2xtBJUQYVDK4dnnWDAp-R6v3cbu-8dpl6vu10Mw0nNFJMFZWUxUrCnbOxSiljrbfStib8aqB4N6tGgHg3qg8Ehc7XPeET8xwOHilf8DwbDbXk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Jiangfeng</creator><creator>Ye, Minxiang</creator><creator>Stankovic, Lina</creator><creator>Stankovic, Vladimir</creator><creator>Pytharouli, Stella</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8112-1976</orcidid><orcidid>https://orcid.org/0000-0002-1075-2420</orcidid><orcidid>https://orcid.org/0000-0002-2899-1518</orcidid><orcidid>https://orcid.org/0000-0003-0083-7145</orcidid><orcidid>https://orcid.org/0000-0001-9848-2535</orcidid></search><sort><creationdate>20230101</creationdate><title>Domain knowledge informed multitask learning for landslide induced seismic classification</title><author>Li, Jiangfeng ; Ye, Minxiang ; Stankovic, Lina ; Stankovic, Vladimir ; Pytharouli, Stella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthropogenic factors</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Earthquakes</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>landslide-induced seismic classification</topic><topic>Landslides</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>multitask learning</topic><topic>Neural networks</topic><topic>P waves</topic><topic>P-wave velocity</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Recording</topic><topic>Rock falls</topic><topic>Rockfall</topic><topic>Seismic activity</topic><topic>Seismic propagation</topic><topic>Seismic velocities</topic><topic>Seismic wave equation</topic><topic>Seismic wave propagation</topic><topic>Seismic wave velocities</topic><topic>Seismic waves</topic><topic>Signal classification</topic><topic>Signal representation</topic><topic>Solid modeling</topic><topic>Wave equations</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiangfeng</creatorcontrib><creatorcontrib>Ye, Minxiang</creatorcontrib><creatorcontrib>Stankovic, Lina</creatorcontrib><creatorcontrib>Stankovic, Vladimir</creatorcontrib><creatorcontrib>Pytharouli, Stella</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jiangfeng</au><au>Ye, Minxiang</au><au>Stankovic, Lina</au><au>Stankovic, Vladimir</au><au>Pytharouli, Stella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain knowledge informed multitask learning for landslide induced seismic classification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3279068</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8112-1976</orcidid><orcidid>https://orcid.org/0000-0002-1075-2420</orcidid><orcidid>https://orcid.org/0000-0002-2899-1518</orcidid><orcidid>https://orcid.org/0000-0003-0083-7145</orcidid><orcidid>https://orcid.org/0000-0001-9848-2535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_10131939
source IEEE Electronic Library (IEL)
subjects Anthropogenic factors
Artificial neural networks
Classification
Earthquakes
Feature extraction
Feature maps
landslide-induced seismic classification
Landslides
Learning
Machine learning
Mathematical models
Monitoring
multitask learning
Neural networks
P waves
P-wave velocity
Physical characteristics
Physical properties
Recording
Rock falls
Rockfall
Seismic activity
Seismic propagation
Seismic velocities
Seismic wave equation
Seismic wave propagation
Seismic wave velocities
Seismic waves
Signal classification
Signal representation
Solid modeling
Wave equations
Wave propagation
Wave velocity
title Domain knowledge informed multitask learning for landslide induced seismic classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20knowledge%20informed%20multitask%20learning%20for%20landslide%20induced%20seismic%20classification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Li,%20Jiangfeng&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3279068&rft_dat=%3Cproquest_RIE%3E2825602761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825602761&rft_id=info:pmid/&rft_ieee_id=10131939&rfr_iscdi=true