Domain knowledge informed multitask learning for landslide induced seismic classification
Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classi...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Li, Jiangfeng Ye, Minxiang Stankovic, Lina Stankovic, Vladimir Pytharouli, Stella |
description | Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods. |
doi_str_mv | 10.1109/LGRS.2023.3279068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10131939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10131939</ieee_id><sourcerecordid>2825602761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrJh-72aP4UYWC4AfoKaTJbEm7m63JFvHfu0t78DQD87wzzEPIJdAZAK1uFvPXtxmjjM84KytaqCMyASlVTmUJx2MvZC4r9XlKzlJaU8qEUuWEfN13rfEh24Tup0G3wsyHuostuqzdNb3vTdpkDZoYfFhlwyRrTHCp8W4k3c4OYEKfWm8z25iUfO2t6X0XzslJbZqEF4c6JR-PD-93T_niZf58d7vILedln7NKAKBhuCwkX7La8aJGYGCN4kIUIBTnKPgSBS2xtBJUQYVDK4dnnWDAp-R6v3cbu-8dpl6vu10Mw0nNFJMFZWUxUrCnbOxSiljrbfStib8aqB4N6tGgHg3qg8Ehc7XPeET8xwOHilf8DwbDbXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825602761</pqid></control><display><type>article</type><title>Domain knowledge informed multitask learning for landslide induced seismic classification</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jiangfeng ; Ye, Minxiang ; Stankovic, Lina ; Stankovic, Vladimir ; Pytharouli, Stella</creator><creatorcontrib>Li, Jiangfeng ; Ye, Minxiang ; Stankovic, Lina ; Stankovic, Vladimir ; Pytharouli, Stella</creatorcontrib><description>Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3279068</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anthropogenic factors ; Artificial neural networks ; Classification ; Earthquakes ; Feature extraction ; Feature maps ; landslide-induced seismic classification ; Landslides ; Learning ; Machine learning ; Mathematical models ; Monitoring ; multitask learning ; Neural networks ; P waves ; P-wave velocity ; Physical characteristics ; Physical properties ; Recording ; Rock falls ; Rockfall ; Seismic activity ; Seismic propagation ; Seismic velocities ; Seismic wave equation ; Seismic wave propagation ; Seismic wave velocities ; Seismic waves ; Signal classification ; Signal representation ; Solid modeling ; Wave equations ; Wave propagation ; Wave velocity</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</citedby><cites>FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</cites><orcidid>0000-0002-8112-1976 ; 0000-0002-1075-2420 ; 0000-0002-2899-1518 ; 0000-0003-0083-7145 ; 0000-0001-9848-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10131939$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10131939$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jiangfeng</creatorcontrib><creatorcontrib>Ye, Minxiang</creatorcontrib><creatorcontrib>Stankovic, Lina</creatorcontrib><creatorcontrib>Stankovic, Vladimir</creatorcontrib><creatorcontrib>Pytharouli, Stella</creatorcontrib><title>Domain knowledge informed multitask learning for landslide induced seismic classification</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.</description><subject>Anthropogenic factors</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Earthquakes</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>landslide-induced seismic classification</subject><subject>Landslides</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>multitask learning</subject><subject>Neural networks</subject><subject>P waves</subject><subject>P-wave velocity</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Recording</subject><subject>Rock falls</subject><subject>Rockfall</subject><subject>Seismic activity</subject><subject>Seismic propagation</subject><subject>Seismic velocities</subject><subject>Seismic wave equation</subject><subject>Seismic wave propagation</subject><subject>Seismic wave velocities</subject><subject>Seismic waves</subject><subject>Signal classification</subject><subject>Signal representation</subject><subject>Solid modeling</subject><subject>Wave equations</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4HlrJh-72aP4UYWC4AfoKaTJbEm7m63JFvHfu0t78DQD87wzzEPIJdAZAK1uFvPXtxmjjM84KytaqCMyASlVTmUJx2MvZC4r9XlKzlJaU8qEUuWEfN13rfEh24Tup0G3wsyHuostuqzdNb3vTdpkDZoYfFhlwyRrTHCp8W4k3c4OYEKfWm8z25iUfO2t6X0XzslJbZqEF4c6JR-PD-93T_niZf58d7vILedln7NKAKBhuCwkX7La8aJGYGCN4kIUIBTnKPgSBS2xtBJUQYVDK4dnnWDAp-R6v3cbu-8dpl6vu10Mw0nNFJMFZWUxUrCnbOxSiljrbfStib8aqB4N6tGgHg3qg8Ehc7XPeET8xwOHilf8DwbDbXk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Jiangfeng</creator><creator>Ye, Minxiang</creator><creator>Stankovic, Lina</creator><creator>Stankovic, Vladimir</creator><creator>Pytharouli, Stella</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8112-1976</orcidid><orcidid>https://orcid.org/0000-0002-1075-2420</orcidid><orcidid>https://orcid.org/0000-0002-2899-1518</orcidid><orcidid>https://orcid.org/0000-0003-0083-7145</orcidid><orcidid>https://orcid.org/0000-0001-9848-2535</orcidid></search><sort><creationdate>20230101</creationdate><title>Domain knowledge informed multitask learning for landslide induced seismic classification</title><author>Li, Jiangfeng ; Ye, Minxiang ; Stankovic, Lina ; Stankovic, Vladimir ; Pytharouli, Stella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-29411ea2eb653b2fd36fe121ca8344614833e43be407e7c518604dec5202d4213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthropogenic factors</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Earthquakes</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>landslide-induced seismic classification</topic><topic>Landslides</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>multitask learning</topic><topic>Neural networks</topic><topic>P waves</topic><topic>P-wave velocity</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Recording</topic><topic>Rock falls</topic><topic>Rockfall</topic><topic>Seismic activity</topic><topic>Seismic propagation</topic><topic>Seismic velocities</topic><topic>Seismic wave equation</topic><topic>Seismic wave propagation</topic><topic>Seismic wave velocities</topic><topic>Seismic waves</topic><topic>Signal classification</topic><topic>Signal representation</topic><topic>Solid modeling</topic><topic>Wave equations</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiangfeng</creatorcontrib><creatorcontrib>Ye, Minxiang</creatorcontrib><creatorcontrib>Stankovic, Lina</creatorcontrib><creatorcontrib>Stankovic, Vladimir</creatorcontrib><creatorcontrib>Pytharouli, Stella</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jiangfeng</au><au>Ye, Minxiang</au><au>Stankovic, Lina</au><au>Stankovic, Vladimir</au><au>Pytharouli, Stella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain knowledge informed multitask learning for landslide induced seismic classification</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Automatic seismic signal classification methods are extensively investigated to reduce or replace manual interpretation, with great potential in previous research. Discriminative seismic wave propagation physical characteristics, such as velocities and accelerations, are rarely considered for classification. A multitask learning scheme is proposed that utilises the seismic wave equation and three-dimensional (3D) P-wave velocity Vp model for signal representation learning. The classifier uses the obtained latent feature maps on a convolutional neural network architecture for classification of rockfall, slide quake, earthquake, and natural/anthropogenic noise events, recorded at an ongoing landslide. Our experimental results show that our approach outperforms state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3279068</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8112-1976</orcidid><orcidid>https://orcid.org/0000-0002-1075-2420</orcidid><orcidid>https://orcid.org/0000-0002-2899-1518</orcidid><orcidid>https://orcid.org/0000-0003-0083-7145</orcidid><orcidid>https://orcid.org/0000-0001-9848-2535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_10131939 |
source | IEEE Electronic Library (IEL) |
subjects | Anthropogenic factors Artificial neural networks Classification Earthquakes Feature extraction Feature maps landslide-induced seismic classification Landslides Learning Machine learning Mathematical models Monitoring multitask learning Neural networks P waves P-wave velocity Physical characteristics Physical properties Recording Rock falls Rockfall Seismic activity Seismic propagation Seismic velocities Seismic wave equation Seismic wave propagation Seismic wave velocities Seismic waves Signal classification Signal representation Solid modeling Wave equations Wave propagation Wave velocity |
title | Domain knowledge informed multitask learning for landslide induced seismic classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20knowledge%20informed%20multitask%20learning%20for%20landslide%20induced%20seismic%20classification&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Li,%20Jiangfeng&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3279068&rft_dat=%3Cproquest_RIE%3E2825602761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825602761&rft_id=info:pmid/&rft_ieee_id=10131939&rfr_iscdi=true |