AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation
In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal...
Gespeichert in:
Veröffentlicht in: | China communications 2023-05, Vol.20 (5), p.275-287 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 5 |
container_start_page | 275 |
container_title | China communications |
container_volume | 20 |
creator | Sun, Bule Wang, Zhiqin Yang, Ang Liu, Xiaofeng Jin, Shi Sun, Peng Tamrakar, Rakesh Jiang, Dajie |
description | In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry. |
doi_str_mv | 10.23919/JCC.fa.2022-0201.202305 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10130739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130739</ieee_id><sourcerecordid>10_23919_JCC_fa_2022_0201_202305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1678326c7f963fc9c9edd6329425028f1b075dde1eb2ccdcd4451795b6c7b8cd3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRbVooSHNH3ShH7Crhy1b3QX3lZJS6AO6E7I0alwcuXgcSv4-dtJFZzPDhTNcDiGUs1RIzfX1U1WlwaaCCZEwwfh0SZafkRlXhUzyLCsuyALxm41TKiWVmJHP5YpCbJuvzQAR6W_TQwuI1HXb7S42zg5NF2_oMtp2j4DURk-xa3dTjDR0Pb19fn2jbmNjhJYCDs32yFyS82BbhMXfnpOP-7v36jFZvzysquU6caJkQzJWK6VQrghayeC00-C9kkJnImeiDLxmRe49cKiFc975LMt5ofN6ROrSeTkn5emv6zvEHoL56ccK_d5wZo5izCjGBGsmMWYSY05iRvTqhDYA8A_jkhVSywNclmOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Bule ; Wang, Zhiqin ; Yang, Ang ; Liu, Xiaofeng ; Jin, Shi ; Sun, Peng ; Tamrakar, Rakesh ; Jiang, Dajie</creator><creatorcontrib>Sun, Bule ; Wang, Zhiqin ; Yang, Ang ; Liu, Xiaofeng ; Jin, Shi ; Sun, Peng ; Tamrakar, Rakesh ; Jiang, Dajie</creatorcontrib><description>In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.fa.2022-0201.202305</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>Artificial intelligence ; Channel estimation ; data analysis ; DMRS ; MIMO ; model design ; OFDM ; preprocessing ; Signal to noise ratio ; Symbols ; Time-frequency analysis ; Wireless communication</subject><ispartof>China communications, 2023-05, Vol.20 (5), p.275-287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1678326c7f963fc9c9edd6329425028f1b075dde1eb2ccdcd4451795b6c7b8cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10130739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Bule</creatorcontrib><creatorcontrib>Wang, Zhiqin</creatorcontrib><creatorcontrib>Yang, Ang</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Tamrakar, Rakesh</creatorcontrib><creatorcontrib>Jiang, Dajie</creatorcontrib><title>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.</description><subject>Artificial intelligence</subject><subject>Channel estimation</subject><subject>data analysis</subject><subject>DMRS</subject><subject>MIMO</subject><subject>model design</subject><subject>OFDM</subject><subject>preprocessing</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Time-frequency analysis</subject><subject>Wireless communication</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRbVooSHNH3ShH7Crhy1b3QX3lZJS6AO6E7I0alwcuXgcSv4-dtJFZzPDhTNcDiGUs1RIzfX1U1WlwaaCCZEwwfh0SZafkRlXhUzyLCsuyALxm41TKiWVmJHP5YpCbJuvzQAR6W_TQwuI1HXb7S42zg5NF2_oMtp2j4DURk-xa3dTjDR0Pb19fn2jbmNjhJYCDs32yFyS82BbhMXfnpOP-7v36jFZvzysquU6caJkQzJWK6VQrghayeC00-C9kkJnImeiDLxmRe49cKiFc975LMt5ofN6ROrSeTkn5emv6zvEHoL56ccK_d5wZo5izCjGBGsmMWYSY05iRvTqhDYA8A_jkhVSywNclmOY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Sun, Bule</creator><creator>Wang, Zhiqin</creator><creator>Yang, Ang</creator><creator>Liu, Xiaofeng</creator><creator>Jin, Shi</creator><creator>Sun, Peng</creator><creator>Tamrakar, Rakesh</creator><creator>Jiang, Dajie</creator><general>China Institute of Communications</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202305</creationdate><title>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</title><author>Sun, Bule ; Wang, Zhiqin ; Yang, Ang ; Liu, Xiaofeng ; Jin, Shi ; Sun, Peng ; Tamrakar, Rakesh ; Jiang, Dajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1678326c7f963fc9c9edd6329425028f1b075dde1eb2ccdcd4451795b6c7b8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Channel estimation</topic><topic>data analysis</topic><topic>DMRS</topic><topic>MIMO</topic><topic>model design</topic><topic>OFDM</topic><topic>preprocessing</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Time-frequency analysis</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bule</creatorcontrib><creatorcontrib>Wang, Zhiqin</creatorcontrib><creatorcontrib>Yang, Ang</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Tamrakar, Rakesh</creatorcontrib><creatorcontrib>Jiang, Dajie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Bule</au><au>Wang, Zhiqin</au><au>Yang, Ang</au><au>Liu, Xiaofeng</au><au>Jin, Shi</au><au>Sun, Peng</au><au>Tamrakar, Rakesh</au><au>Jiang, Dajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2023-05</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>275</spage><epage>287</epage><pages>275-287</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.fa.2022-0201.202305</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1673-5447 |
ispartof | China communications, 2023-05, Vol.20 (5), p.275-287 |
issn | 1673-5447 |
language | eng |
recordid | cdi_ieee_primary_10130739 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Channel estimation data analysis DMRS MIMO model design OFDM preprocessing Signal to noise ratio Symbols Time-frequency analysis Wireless communication |
title | AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20enlightens%20wireless%20communication:%20Analyses%20and%20solutions%20for%20DMRS%20channel%20estimation&rft.jtitle=China%20communications&rft.au=Sun,%20Bule&rft.date=2023-05&rft.volume=20&rft.issue=5&rft.spage=275&rft.epage=287&rft.pages=275-287&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.fa.2022-0201.202305&rft_dat=%3Ccrossref_RIE%3E10_23919_JCC_fa_2022_0201_202305%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10130739&rfr_iscdi=true |