AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation

In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:China communications 2023-05, Vol.20 (5), p.275-287
Hauptverfasser: Sun, Bule, Wang, Zhiqin, Yang, Ang, Liu, Xiaofeng, Jin, Shi, Sun, Peng, Tamrakar, Rakesh, Jiang, Dajie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 5
container_start_page 275
container_title China communications
container_volume 20
creator Sun, Bule
Wang, Zhiqin
Yang, Ang
Liu, Xiaofeng
Jin, Shi
Sun, Peng
Tamrakar, Rakesh
Jiang, Dajie
description In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.
doi_str_mv 10.23919/JCC.fa.2022-0201.202305
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10130739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130739</ieee_id><sourcerecordid>10_23919_JCC_fa_2022_0201_202305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-1678326c7f963fc9c9edd6329425028f1b075dde1eb2ccdcd4451795b6c7b8cd3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRbVooSHNH3ShH7Crhy1b3QX3lZJS6AO6E7I0alwcuXgcSv4-dtJFZzPDhTNcDiGUs1RIzfX1U1WlwaaCCZEwwfh0SZafkRlXhUzyLCsuyALxm41TKiWVmJHP5YpCbJuvzQAR6W_TQwuI1HXb7S42zg5NF2_oMtp2j4DURk-xa3dTjDR0Pb19fn2jbmNjhJYCDs32yFyS82BbhMXfnpOP-7v36jFZvzysquU6caJkQzJWK6VQrghayeC00-C9kkJnImeiDLxmRe49cKiFc975LMt5ofN6ROrSeTkn5emv6zvEHoL56ccK_d5wZo5izCjGBGsmMWYSY05iRvTqhDYA8A_jkhVSywNclmOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Bule ; Wang, Zhiqin ; Yang, Ang ; Liu, Xiaofeng ; Jin, Shi ; Sun, Peng ; Tamrakar, Rakesh ; Jiang, Dajie</creator><creatorcontrib>Sun, Bule ; Wang, Zhiqin ; Yang, Ang ; Liu, Xiaofeng ; Jin, Shi ; Sun, Peng ; Tamrakar, Rakesh ; Jiang, Dajie</creatorcontrib><description>In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.</description><identifier>ISSN: 1673-5447</identifier><identifier>DOI: 10.23919/JCC.fa.2022-0201.202305</identifier><identifier>CODEN: CCHOBE</identifier><language>eng</language><publisher>China Institute of Communications</publisher><subject>Artificial intelligence ; Channel estimation ; data analysis ; DMRS ; MIMO ; model design ; OFDM ; preprocessing ; Signal to noise ratio ; Symbols ; Time-frequency analysis ; Wireless communication</subject><ispartof>China communications, 2023-05, Vol.20 (5), p.275-287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-1678326c7f963fc9c9edd6329425028f1b075dde1eb2ccdcd4451795b6c7b8cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130739$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10130739$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Bule</creatorcontrib><creatorcontrib>Wang, Zhiqin</creatorcontrib><creatorcontrib>Yang, Ang</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Tamrakar, Rakesh</creatorcontrib><creatorcontrib>Jiang, Dajie</creatorcontrib><title>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</title><title>China communications</title><addtitle>ChinaComm</addtitle><description>In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.</description><subject>Artificial intelligence</subject><subject>Channel estimation</subject><subject>data analysis</subject><subject>DMRS</subject><subject>MIMO</subject><subject>model design</subject><subject>OFDM</subject><subject>preprocessing</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Time-frequency analysis</subject><subject>Wireless communication</subject><issn>1673-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRbVooSHNH3ShH7Crhy1b3QX3lZJS6AO6E7I0alwcuXgcSv4-dtJFZzPDhTNcDiGUs1RIzfX1U1WlwaaCCZEwwfh0SZafkRlXhUzyLCsuyALxm41TKiWVmJHP5YpCbJuvzQAR6W_TQwuI1HXb7S42zg5NF2_oMtp2j4DURk-xa3dTjDR0Pb19fn2jbmNjhJYCDs32yFyS82BbhMXfnpOP-7v36jFZvzysquU6caJkQzJWK6VQrghayeC00-C9kkJnImeiDLxmRe49cKiFc975LMt5ofN6ROrSeTkn5emv6zvEHoL56ccK_d5wZo5izCjGBGsmMWYSY05iRvTqhDYA8A_jkhVSywNclmOY</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Sun, Bule</creator><creator>Wang, Zhiqin</creator><creator>Yang, Ang</creator><creator>Liu, Xiaofeng</creator><creator>Jin, Shi</creator><creator>Sun, Peng</creator><creator>Tamrakar, Rakesh</creator><creator>Jiang, Dajie</creator><general>China Institute of Communications</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202305</creationdate><title>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</title><author>Sun, Bule ; Wang, Zhiqin ; Yang, Ang ; Liu, Xiaofeng ; Jin, Shi ; Sun, Peng ; Tamrakar, Rakesh ; Jiang, Dajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-1678326c7f963fc9c9edd6329425028f1b075dde1eb2ccdcd4451795b6c7b8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Channel estimation</topic><topic>data analysis</topic><topic>DMRS</topic><topic>MIMO</topic><topic>model design</topic><topic>OFDM</topic><topic>preprocessing</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Time-frequency analysis</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bule</creatorcontrib><creatorcontrib>Wang, Zhiqin</creatorcontrib><creatorcontrib>Yang, Ang</creatorcontrib><creatorcontrib>Liu, Xiaofeng</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><creatorcontrib>Sun, Peng</creatorcontrib><creatorcontrib>Tamrakar, Rakesh</creatorcontrib><creatorcontrib>Jiang, Dajie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>China communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Bule</au><au>Wang, Zhiqin</au><au>Yang, Ang</au><au>Liu, Xiaofeng</au><au>Jin, Shi</au><au>Sun, Peng</au><au>Tamrakar, Rakesh</au><au>Jiang, Dajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation</atitle><jtitle>China communications</jtitle><stitle>ChinaComm</stitle><date>2023-05</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>275</spage><epage>287</epage><pages>275-287</pages><issn>1673-5447</issn><coden>CCHOBE</coden><abstract>In this paper, a systematic description of the artificial intelligence (AI)-based channel estimation track of the 2nd Wireless Communication AI Competition (WAIC) is provided, which is hosted by IMT-2020(5G) Promotion Group 5G+AI Work Group. Firstly, the system model of demodulation reference signal (DMRS) based channel estimation problem and its corresponding dataset are introduced. Then the potential approaches for enhancing the performance of AI based channel estimation are discussed from the viewpoints of data analysis, pre-processing, key components and backbone network structures. At last, the final competition results composed of different solutions are concluded. It is expected that the AI-based channel estimation track of the 2nd WAIC could provide insightful guidance for both the academia and industry.</abstract><pub>China Institute of Communications</pub><doi>10.23919/JCC.fa.2022-0201.202305</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1673-5447
ispartof China communications, 2023-05, Vol.20 (5), p.275-287
issn 1673-5447
language eng
recordid cdi_ieee_primary_10130739
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Channel estimation
data analysis
DMRS
MIMO
model design
OFDM
preprocessing
Signal to noise ratio
Symbols
Time-frequency analysis
Wireless communication
title AI enlightens wireless communication: Analyses and solutions for DMRS channel estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20enlightens%20wireless%20communication:%20Analyses%20and%20solutions%20for%20DMRS%20channel%20estimation&rft.jtitle=China%20communications&rft.au=Sun,%20Bule&rft.date=2023-05&rft.volume=20&rft.issue=5&rft.spage=275&rft.epage=287&rft.pages=275-287&rft.issn=1673-5447&rft.coden=CCHOBE&rft_id=info:doi/10.23919/JCC.fa.2022-0201.202305&rft_dat=%3Ccrossref_RIE%3E10_23919_JCC_fa_2022_0201_202305%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10130739&rfr_iscdi=true