Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces
Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-05, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | |
creator | Kong, Liyuan Yang, Chunjie Lou, Siwei Cai, Yu Huang, Xiaoke Sun, Mingyang |
description | Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TIM.2023.3277978 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10129979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129979</ieee_id><sourcerecordid>10129979</sourcerecordid><originalsourceid>FETCH-ieee_primary_101299793</originalsourceid><addsrcrecordid>eNqFjL1OAkEURqfQRPzpLSzuC-x6ZxcZpnWFSEFClNiSy3JXrxlmNjODkZYnBxNja3W-5Hw5St1qLLVGe7-czcsKq7qsK2OsGZ-pAaIeF3b4MLpQlyl9IqIZDc1AHZrgHK1DpCxfDJPvHKnNEjyEDmY-cyzeKAqtHUMTdr0T_w4v7Ojnkz6kT0B-A097T1tpE3QhwiLyRv4ir-KkPc0mnGo-g3h4dJQyTHfRU8vpWp135BLf_PJK3U0ny-a5EGZe9VG2FPcrjbqy1tj6H30EB8ZQ1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</title><source>IEEE Electronic Library (IEL)</source><creator>Kong, Liyuan ; Yang, Chunjie ; Lou, Siwei ; Cai, Yu ; Huang, Xiaoke ; Sun, Mingyang</creator><creatorcontrib>Kong, Liyuan ; Yang, Chunjie ; Lou, Siwei ; Cai, Yu ; Huang, Xiaoke ; Sun, Mingyang</creatorcontrib><description>Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0018-9456</identifier><identifier>DOI: 10.1109/TIM.2023.3277978</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blast furnaces ; Convolutional neural networks ; Couplings ; Dynamics ; Feature extraction ; graph convolutional networks ; inter-variable coupling relationship ; ironmaking ; Silicon ; Soft sensors ; supervised graphs ; Temperature measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-05, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4362-2104 ; 0000-0001-6611-4754 ; 0000-0002-1697-4825 ; 0000-0003-4457-2900 ; 0000-0003-0810-5811 ; 0000-0002-5790-5025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10129979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Liyuan</creatorcontrib><creatorcontrib>Yang, Chunjie</creatorcontrib><creatorcontrib>Lou, Siwei</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Huang, Xiaoke</creatorcontrib><creatorcontrib>Sun, Mingyang</creatorcontrib><title>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.</description><subject>Blast furnaces</subject><subject>Convolutional neural networks</subject><subject>Couplings</subject><subject>Dynamics</subject><subject>Feature extraction</subject><subject>graph convolutional networks</subject><subject>inter-variable coupling relationship</subject><subject>ironmaking</subject><subject>Silicon</subject><subject>Soft sensors</subject><subject>supervised graphs</subject><subject>Temperature measurement</subject><issn>0018-9456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjL1OAkEURqfQRPzpLSzuC-x6ZxcZpnWFSEFClNiSy3JXrxlmNjODkZYnBxNja3W-5Hw5St1qLLVGe7-czcsKq7qsK2OsGZ-pAaIeF3b4MLpQlyl9IqIZDc1AHZrgHK1DpCxfDJPvHKnNEjyEDmY-cyzeKAqtHUMTdr0T_w4v7Ojnkz6kT0B-A097T1tpE3QhwiLyRv4ir-KkPc0mnGo-g3h4dJQyTHfRU8vpWp135BLf_PJK3U0ny-a5EGZe9VG2FPcrjbqy1tj6H30EB8ZQ1Q</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Kong, Liyuan</creator><creator>Yang, Chunjie</creator><creator>Lou, Siwei</creator><creator>Cai, Yu</creator><creator>Huang, Xiaoke</creator><creator>Sun, Mingyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4362-2104</orcidid><orcidid>https://orcid.org/0000-0001-6611-4754</orcidid><orcidid>https://orcid.org/0000-0002-1697-4825</orcidid><orcidid>https://orcid.org/0000-0003-4457-2900</orcidid><orcidid>https://orcid.org/0000-0003-0810-5811</orcidid><orcidid>https://orcid.org/0000-0002-5790-5025</orcidid></search><sort><creationdate>20230518</creationdate><title>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</title><author>Kong, Liyuan ; Yang, Chunjie ; Lou, Siwei ; Cai, Yu ; Huang, Xiaoke ; Sun, Mingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101299793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blast furnaces</topic><topic>Convolutional neural networks</topic><topic>Couplings</topic><topic>Dynamics</topic><topic>Feature extraction</topic><topic>graph convolutional networks</topic><topic>inter-variable coupling relationship</topic><topic>ironmaking</topic><topic>Silicon</topic><topic>Soft sensors</topic><topic>supervised graphs</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Liyuan</creatorcontrib><creatorcontrib>Yang, Chunjie</creatorcontrib><creatorcontrib>Lou, Siwei</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Huang, Xiaoke</creatorcontrib><creatorcontrib>Sun, Mingyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Liyuan</au><au>Yang, Chunjie</au><au>Lou, Siwei</au><au>Cai, Yu</au><au>Huang, Xiaoke</au><au>Sun, Mingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-05-18</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><coden>IEIMAO</coden><abstract>Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2023.3277978</doi><orcidid>https://orcid.org/0000-0002-4362-2104</orcidid><orcidid>https://orcid.org/0000-0001-6611-4754</orcidid><orcidid>https://orcid.org/0000-0002-1697-4825</orcidid><orcidid>https://orcid.org/0000-0003-4457-2900</orcidid><orcidid>https://orcid.org/0000-0003-0810-5811</orcidid><orcidid>https://orcid.org/0000-0002-5790-5025</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-05, p.1-1 |
issn | 0018-9456 |
language | eng |
recordid | cdi_ieee_primary_10129979 |
source | IEEE Electronic Library (IEL) |
subjects | Blast furnaces Convolutional neural networks Couplings Dynamics Feature extraction graph convolutional networks inter-variable coupling relationship ironmaking Silicon Soft sensors supervised graphs Temperature measurement |
title | Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Extraction%20of%20Inter-Variable%20Coupling%20Relationships%20and%20Dynamics%20for%20Prediction%20of%20Silicon%20Content%20in%20Blast%20Furnaces&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Kong,%20Liyuan&rft.date=2023-05-18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3277978&rft_dat=%3Cieee_RIE%3E10129979%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10129979&rfr_iscdi=true |