Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces

Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-05, p.1-1
Hauptverfasser: Kong, Liyuan, Yang, Chunjie, Lou, Siwei, Cai, Yu, Huang, Xiaoke, Sun, Mingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume
creator Kong, Liyuan
Yang, Chunjie
Lou, Siwei
Cai, Yu
Huang, Xiaoke
Sun, Mingyang
description Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/TIM.2023.3277978
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10129979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129979</ieee_id><sourcerecordid>10129979</sourcerecordid><originalsourceid>FETCH-ieee_primary_101299793</originalsourceid><addsrcrecordid>eNqFjL1OAkEURqfQRPzpLSzuC-x6ZxcZpnWFSEFClNiSy3JXrxlmNjODkZYnBxNja3W-5Hw5St1qLLVGe7-czcsKq7qsK2OsGZ-pAaIeF3b4MLpQlyl9IqIZDc1AHZrgHK1DpCxfDJPvHKnNEjyEDmY-cyzeKAqtHUMTdr0T_w4v7Ojnkz6kT0B-A097T1tpE3QhwiLyRv4ir-KkPc0mnGo-g3h4dJQyTHfRU8vpWp135BLf_PJK3U0ny-a5EGZe9VG2FPcrjbqy1tj6H30EB8ZQ1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</title><source>IEEE Electronic Library (IEL)</source><creator>Kong, Liyuan ; Yang, Chunjie ; Lou, Siwei ; Cai, Yu ; Huang, Xiaoke ; Sun, Mingyang</creator><creatorcontrib>Kong, Liyuan ; Yang, Chunjie ; Lou, Siwei ; Cai, Yu ; Huang, Xiaoke ; Sun, Mingyang</creatorcontrib><description>Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0018-9456</identifier><identifier>DOI: 10.1109/TIM.2023.3277978</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blast furnaces ; Convolutional neural networks ; Couplings ; Dynamics ; Feature extraction ; graph convolutional networks ; inter-variable coupling relationship ; ironmaking ; Silicon ; Soft sensors ; supervised graphs ; Temperature measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-05, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4362-2104 ; 0000-0001-6611-4754 ; 0000-0002-1697-4825 ; 0000-0003-4457-2900 ; 0000-0003-0810-5811 ; 0000-0002-5790-5025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10129979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Liyuan</creatorcontrib><creatorcontrib>Yang, Chunjie</creatorcontrib><creatorcontrib>Lou, Siwei</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Huang, Xiaoke</creatorcontrib><creatorcontrib>Sun, Mingyang</creatorcontrib><title>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.</description><subject>Blast furnaces</subject><subject>Convolutional neural networks</subject><subject>Couplings</subject><subject>Dynamics</subject><subject>Feature extraction</subject><subject>graph convolutional networks</subject><subject>inter-variable coupling relationship</subject><subject>ironmaking</subject><subject>Silicon</subject><subject>Soft sensors</subject><subject>supervised graphs</subject><subject>Temperature measurement</subject><issn>0018-9456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjL1OAkEURqfQRPzpLSzuC-x6ZxcZpnWFSEFClNiSy3JXrxlmNjODkZYnBxNja3W-5Hw5St1qLLVGe7-czcsKq7qsK2OsGZ-pAaIeF3b4MLpQlyl9IqIZDc1AHZrgHK1DpCxfDJPvHKnNEjyEDmY-cyzeKAqtHUMTdr0T_w4v7Ojnkz6kT0B-A097T1tpE3QhwiLyRv4ir-KkPc0mnGo-g3h4dJQyTHfRU8vpWp135BLf_PJK3U0ny-a5EGZe9VG2FPcrjbqy1tj6H30EB8ZQ1Q</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Kong, Liyuan</creator><creator>Yang, Chunjie</creator><creator>Lou, Siwei</creator><creator>Cai, Yu</creator><creator>Huang, Xiaoke</creator><creator>Sun, Mingyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4362-2104</orcidid><orcidid>https://orcid.org/0000-0001-6611-4754</orcidid><orcidid>https://orcid.org/0000-0002-1697-4825</orcidid><orcidid>https://orcid.org/0000-0003-4457-2900</orcidid><orcidid>https://orcid.org/0000-0003-0810-5811</orcidid><orcidid>https://orcid.org/0000-0002-5790-5025</orcidid></search><sort><creationdate>20230518</creationdate><title>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</title><author>Kong, Liyuan ; Yang, Chunjie ; Lou, Siwei ; Cai, Yu ; Huang, Xiaoke ; Sun, Mingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101299793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blast furnaces</topic><topic>Convolutional neural networks</topic><topic>Couplings</topic><topic>Dynamics</topic><topic>Feature extraction</topic><topic>graph convolutional networks</topic><topic>inter-variable coupling relationship</topic><topic>ironmaking</topic><topic>Silicon</topic><topic>Soft sensors</topic><topic>supervised graphs</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Liyuan</creatorcontrib><creatorcontrib>Yang, Chunjie</creatorcontrib><creatorcontrib>Lou, Siwei</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Huang, Xiaoke</creatorcontrib><creatorcontrib>Sun, Mingyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Liyuan</au><au>Yang, Chunjie</au><au>Lou, Siwei</au><au>Cai, Yu</au><au>Huang, Xiaoke</au><au>Sun, Mingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-05-18</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><coden>IEIMAO</coden><abstract>Soft sensor of silicon content in hot metal is challenging due to the nonlinearity, dynamics, and non-Euclidean coupling relationship between process variables. The inter-variable coupling relationship widely exists in the ironmaking process. Nevertheless, they are generally overlooked in modeling. To solve this issue, this paper proposes a novel temporal graph convolutional network with supervised graphs (TGCN-S). Different from traditional soft sensor methods, TGCN-S explicitly models the inherent non-Euclidean and irregular coupling relationships in the ironmaking process. First, a graph structure learning module is designed, which can adaptively learn potential inter-variable relationships from data. This module is embedded in TGCN-S to learn the supervised graph structures in an end-to-end manner. Second, a novel methodological framework is proposed based on the supervised graph structures, which can collaboratively extract the inter-variable coupling relationships and intra-variable dynamics. In this structure, information between process variables is selectively aggregated while taking into account the dynamics within variables. Finally, experiments based on the real ironmaking process demonstrate the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2023.3277978</doi><orcidid>https://orcid.org/0000-0002-4362-2104</orcidid><orcidid>https://orcid.org/0000-0001-6611-4754</orcidid><orcidid>https://orcid.org/0000-0002-1697-4825</orcidid><orcidid>https://orcid.org/0000-0003-4457-2900</orcidid><orcidid>https://orcid.org/0000-0003-0810-5811</orcidid><orcidid>https://orcid.org/0000-0002-5790-5025</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-05, p.1-1
issn 0018-9456
language eng
recordid cdi_ieee_primary_10129979
source IEEE Electronic Library (IEL)
subjects Blast furnaces
Convolutional neural networks
Couplings
Dynamics
Feature extraction
graph convolutional networks
inter-variable coupling relationship
ironmaking
Silicon
Soft sensors
supervised graphs
Temperature measurement
title Collaborative Extraction of Inter-Variable Coupling Relationships and Dynamics for Prediction of Silicon Content in Blast Furnaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Extraction%20of%20Inter-Variable%20Coupling%20Relationships%20and%20Dynamics%20for%20Prediction%20of%20Silicon%20Content%20in%20Blast%20Furnaces&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Kong,%20Liyuan&rft.date=2023-05-18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3277978&rft_dat=%3Cieee_RIE%3E10129979%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10129979&rfr_iscdi=true