Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz
NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standard...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Dai, Dongxue Li, Yi Wang, Jiafu Emms, Frederick Shao, Haiming |
description | NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable. |
doi_str_mv | 10.1109/TIM.2023.3277114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10128853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10128853</ieee_id><sourcerecordid>2824111628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xt50RAqWVilgKC0N0cZziKiTBdgf49aRqB6a74X3eOz0IXVMyo5Tkd-vly4wRxmecaU2pOEETKqXOcqXYKZoQQk2WC6nO0UWMW0KIVkJP0MeDbyG5AC0u-q8Bgo99h_sGL_zmM3vv2wQbhwsYwPoEnXUYuho_etc6m4K34xqjHyD5EZuDTX3AkLAkePF7ic4aaKO7Os4peps_rYtFtnp9Xhb3q8yynKWs0gCVtYKovKasgsY5Uovxbc2NoBaU1RVlVJuqkrV0XFrOGy2kgUYZIQWfottD7xD6752Lqdz2u9CNJ0tmmKCUKmbGFDmkbOhjDK4ph-C_IPyUlJR7heWosNwrLI8KR-TmgHjn3L84ZcZIzv8ATQBsFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824111628</pqid></control><display><type>article</type><title>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Dongxue ; Li, Yi ; Wang, Jiafu ; Emms, Frederick ; Shao, Haiming</creator><creatorcontrib>Dai, Dongxue ; Li, Yi ; Wang, Jiafu ; Emms, Frederick ; Shao, Haiming</creatorcontrib><description>NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3277114</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air transportation ; Capacitance ; Capacitance measurement ; Capacitors ; Comparison ; Compressed gas ; compressed-gas capacitor ; Dissipation factor ; High voltages ; high-voltage standard capacitor ; High-voltage techniques ; Measurement uncertainty ; Temperature measurement ; voltage dependence</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</citedby><cites>FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</cites><orcidid>0000-0002-1196-5508 ; 0000-0003-1092-5712 ; 0000-0002-8332-9367 ; 0000-0002-3305-4190 ; 0000-0003-1440-3006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10128853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10128853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Dongxue</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Jiafu</creatorcontrib><creatorcontrib>Emms, Frederick</creatorcontrib><creatorcontrib>Shao, Haiming</creatorcontrib><title>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.</description><subject>Air transportation</subject><subject>Capacitance</subject><subject>Capacitance measurement</subject><subject>Capacitors</subject><subject>Comparison</subject><subject>Compressed gas</subject><subject>compressed-gas capacitor</subject><subject>Dissipation factor</subject><subject>High voltages</subject><subject>high-voltage standard capacitor</subject><subject>High-voltage techniques</subject><subject>Measurement uncertainty</subject><subject>Temperature measurement</subject><subject>voltage dependence</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xt50RAqWVilgKC0N0cZziKiTBdgf49aRqB6a74X3eOz0IXVMyo5Tkd-vly4wRxmecaU2pOEETKqXOcqXYKZoQQk2WC6nO0UWMW0KIVkJP0MeDbyG5AC0u-q8Bgo99h_sGL_zmM3vv2wQbhwsYwPoEnXUYuho_etc6m4K34xqjHyD5EZuDTX3AkLAkePF7ic4aaKO7Os4peps_rYtFtnp9Xhb3q8yynKWs0gCVtYKovKasgsY5Uovxbc2NoBaU1RVlVJuqkrV0XFrOGy2kgUYZIQWfottD7xD6752Lqdz2u9CNJ0tmmKCUKmbGFDmkbOhjDK4ph-C_IPyUlJR7heWosNwrLI8KR-TmgHjn3L84ZcZIzv8ATQBsFQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Dai, Dongxue</creator><creator>Li, Yi</creator><creator>Wang, Jiafu</creator><creator>Emms, Frederick</creator><creator>Shao, Haiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1196-5508</orcidid><orcidid>https://orcid.org/0000-0003-1092-5712</orcidid><orcidid>https://orcid.org/0000-0002-8332-9367</orcidid><orcidid>https://orcid.org/0000-0002-3305-4190</orcidid><orcidid>https://orcid.org/0000-0003-1440-3006</orcidid></search><sort><creationdate>20230101</creationdate><title>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</title><author>Dai, Dongxue ; Li, Yi ; Wang, Jiafu ; Emms, Frederick ; Shao, Haiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air transportation</topic><topic>Capacitance</topic><topic>Capacitance measurement</topic><topic>Capacitors</topic><topic>Comparison</topic><topic>Compressed gas</topic><topic>compressed-gas capacitor</topic><topic>Dissipation factor</topic><topic>High voltages</topic><topic>high-voltage standard capacitor</topic><topic>High-voltage techniques</topic><topic>Measurement uncertainty</topic><topic>Temperature measurement</topic><topic>voltage dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Dongxue</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Jiafu</creatorcontrib><creatorcontrib>Emms, Frederick</creatorcontrib><creatorcontrib>Shao, Haiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Dongxue</au><au>Li, Yi</au><au>Wang, Jiafu</au><au>Emms, Frederick</au><au>Shao, Haiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3277114</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1196-5508</orcidid><orcidid>https://orcid.org/0000-0003-1092-5712</orcidid><orcidid>https://orcid.org/0000-0002-8332-9367</orcidid><orcidid>https://orcid.org/0000-0002-3305-4190</orcidid><orcidid>https://orcid.org/0000-0003-1440-3006</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10128853 |
source | IEEE Electronic Library (IEL) |
subjects | Air transportation Capacitance Capacitance measurement Capacitors Comparison Compressed gas compressed-gas capacitor Dissipation factor High voltages high-voltage standard capacitor High-voltage techniques Measurement uncertainty Temperature measurement voltage dependence |
title | Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilateral%20Comparison%20of%20High-Voltage%20Capacitance%20and%20Dielectric%20Dissipation%20Factor%20at%2050%20Hz&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dai,%20Dongxue&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3277114&rft_dat=%3Cproquest_RIE%3E2824111628%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824111628&rft_id=info:pmid/&rft_ieee_id=10128853&rfr_iscdi=true |