Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz

NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Hauptverfasser: Dai, Dongxue, Li, Yi, Wang, Jiafu, Emms, Frederick, Shao, Haiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Dai, Dongxue
Li, Yi
Wang, Jiafu
Emms, Frederick
Shao, Haiming
description NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.
doi_str_mv 10.1109/TIM.2023.3277114
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10128853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10128853</ieee_id><sourcerecordid>2824111628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xt50RAqWVilgKC0N0cZziKiTBdgf49aRqB6a74X3eOz0IXVMyo5Tkd-vly4wRxmecaU2pOEETKqXOcqXYKZoQQk2WC6nO0UWMW0KIVkJP0MeDbyG5AC0u-q8Bgo99h_sGL_zmM3vv2wQbhwsYwPoEnXUYuho_etc6m4K34xqjHyD5EZuDTX3AkLAkePF7ic4aaKO7Os4peps_rYtFtnp9Xhb3q8yynKWs0gCVtYKovKasgsY5Uovxbc2NoBaU1RVlVJuqkrV0XFrOGy2kgUYZIQWfottD7xD6752Lqdz2u9CNJ0tmmKCUKmbGFDmkbOhjDK4ph-C_IPyUlJR7heWosNwrLI8KR-TmgHjn3L84ZcZIzv8ATQBsFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824111628</pqid></control><display><type>article</type><title>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Dongxue ; Li, Yi ; Wang, Jiafu ; Emms, Frederick ; Shao, Haiming</creator><creatorcontrib>Dai, Dongxue ; Li, Yi ; Wang, Jiafu ; Emms, Frederick ; Shao, Haiming</creatorcontrib><description>NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3277114</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air transportation ; Capacitance ; Capacitance measurement ; Capacitors ; Comparison ; Compressed gas ; compressed-gas capacitor ; Dissipation factor ; High voltages ; high-voltage standard capacitor ; High-voltage techniques ; Measurement uncertainty ; Temperature measurement ; voltage dependence</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</citedby><cites>FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</cites><orcidid>0000-0002-1196-5508 ; 0000-0003-1092-5712 ; 0000-0002-8332-9367 ; 0000-0002-3305-4190 ; 0000-0003-1440-3006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10128853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10128853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Dongxue</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Jiafu</creatorcontrib><creatorcontrib>Emms, Frederick</creatorcontrib><creatorcontrib>Shao, Haiming</creatorcontrib><title>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.</description><subject>Air transportation</subject><subject>Capacitance</subject><subject>Capacitance measurement</subject><subject>Capacitors</subject><subject>Comparison</subject><subject>Compressed gas</subject><subject>compressed-gas capacitor</subject><subject>Dissipation factor</subject><subject>High voltages</subject><subject>high-voltage standard capacitor</subject><subject>High-voltage techniques</subject><subject>Measurement uncertainty</subject><subject>Temperature measurement</subject><subject>voltage dependence</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xt50RAqWVilgKC0N0cZziKiTBdgf49aRqB6a74X3eOz0IXVMyo5Tkd-vly4wRxmecaU2pOEETKqXOcqXYKZoQQk2WC6nO0UWMW0KIVkJP0MeDbyG5AC0u-q8Bgo99h_sGL_zmM3vv2wQbhwsYwPoEnXUYuho_etc6m4K34xqjHyD5EZuDTX3AkLAkePF7ic4aaKO7Os4peps_rYtFtnp9Xhb3q8yynKWs0gCVtYKovKasgsY5Uovxbc2NoBaU1RVlVJuqkrV0XFrOGy2kgUYZIQWfottD7xD6752Lqdz2u9CNJ0tmmKCUKmbGFDmkbOhjDK4ph-C_IPyUlJR7heWosNwrLI8KR-TmgHjn3L84ZcZIzv8ATQBsFQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Dai, Dongxue</creator><creator>Li, Yi</creator><creator>Wang, Jiafu</creator><creator>Emms, Frederick</creator><creator>Shao, Haiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1196-5508</orcidid><orcidid>https://orcid.org/0000-0003-1092-5712</orcidid><orcidid>https://orcid.org/0000-0002-8332-9367</orcidid><orcidid>https://orcid.org/0000-0002-3305-4190</orcidid><orcidid>https://orcid.org/0000-0003-1440-3006</orcidid></search><sort><creationdate>20230101</creationdate><title>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</title><author>Dai, Dongxue ; Li, Yi ; Wang, Jiafu ; Emms, Frederick ; Shao, Haiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-b7aabcc4069d12bafee0d466273841ca6c7b12178bb5d5e35c33f7458af684543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air transportation</topic><topic>Capacitance</topic><topic>Capacitance measurement</topic><topic>Capacitors</topic><topic>Comparison</topic><topic>Compressed gas</topic><topic>compressed-gas capacitor</topic><topic>Dissipation factor</topic><topic>High voltages</topic><topic>high-voltage standard capacitor</topic><topic>High-voltage techniques</topic><topic>Measurement uncertainty</topic><topic>Temperature measurement</topic><topic>voltage dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Dongxue</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Wang, Jiafu</creatorcontrib><creatorcontrib>Emms, Frederick</creatorcontrib><creatorcontrib>Shao, Haiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Dongxue</au><au>Li, Yi</au><au>Wang, Jiafu</au><au>Emms, Frederick</au><au>Shao, Haiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>NIM (National Institute of Metrology, China) and NMIA (National Measurement Institute, Australia) carried out a comparison program, which included low-voltage capacitance, the voltage dependence of high-voltage capacitance and the dielectric dissipation factor (DDF) at 50 Hz. The travelling standards included a low-voltage standard capacitor, a dissipation factor standard and a 100 kV compressed-gas capacitor. The capacitance and DDF of the standard capacitor, measured by the two institutes, agreed within 2 μF/F and 2×10 -6 , respectively, at 50 Hz and 500 V. DDF measurements at nominal values of 0.00000, 0.0001 and 0.001 agreed within 6×10 -6 at 50 Hz and 10 kV. The capacitance change of a 100 kV compressed-gas capacitor measured by the two institutes agreed within 2 μF/F over the voltage range from 10 kV to 100 kV. The success of the program proved comparisons using a re-filled high-voltage compressed gas capacitor and a low-voltage standard capacitor can be conveniently used to validate the complete traceability chain of the measurement of high-voltage capacitance at 50 Hz. The program also proved that DDF measurements with different implementations of traceability chain via capacitance and resistance would agree well within the uncertainties required by industrial measurements and a commercial DDF standard that has undergone international air travel would be sufficiently stable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3277114</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1196-5508</orcidid><orcidid>https://orcid.org/0000-0003-1092-5712</orcidid><orcidid>https://orcid.org/0000-0002-8332-9367</orcidid><orcidid>https://orcid.org/0000-0002-3305-4190</orcidid><orcidid>https://orcid.org/0000-0003-1440-3006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10128853
source IEEE Electronic Library (IEL)
subjects Air transportation
Capacitance
Capacitance measurement
Capacitors
Comparison
Compressed gas
compressed-gas capacitor
Dissipation factor
High voltages
high-voltage standard capacitor
High-voltage techniques
Measurement uncertainty
Temperature measurement
voltage dependence
title Bilateral Comparison of High-Voltage Capacitance and Dielectric Dissipation Factor at 50 Hz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilateral%20Comparison%20of%20High-Voltage%20Capacitance%20and%20Dielectric%20Dissipation%20Factor%20at%2050%20Hz&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dai,%20Dongxue&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3277114&rft_dat=%3Cproquest_RIE%3E2824111628%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824111628&rft_id=info:pmid/&rft_ieee_id=10128853&rfr_iscdi=true