Self-supervised spontaneous latent-based facial expression sequence generation

In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of signal processing 2023-01, Vol.4, p.1-9
Hauptverfasser: Yap, Chuin Hong, Yap, Moi Hoon, Davison, Adrian K., Cunningham, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title IEEE open journal of signal processing
container_volume 4
creator Yap, Chuin Hong
Yap, Moi Hoon
Davison, Adrian K.
Cunningham, Ryan
description In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.
doi_str_mv 10.1109/OJSP.2023.3275052
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10127642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10127642</ieee_id><doaj_id>oai_doaj_org_article_ca7fade38b284ebb9b2e8ad019129b6e</doaj_id><sourcerecordid>2823193933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-61e39becb4b54175a6499dd17dbdcd627ace94cab4524ce98e05519916b588123</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaGFhG0-oJCDoWdvNCPJto5laZuEkA2kOYuRNA5eHMuVvKX5-3q7oexpHm_evJnhFcVnEGsAYa63d0-PaxQo1xIbLTSeFRdYK1WBRPxwgs-Ly5x3QgjUAAtxUTw88dBVeT9x-t1nDmWe4jjTyHGfy4FmHufK0aHRke9pKPnPlDjnPo5l5l97Hj2XLzxyonnhPhUfOxoyX77XVfH8_dvPzU11v_1xu_l6X3mp9VzVwNI49k45raDRVCtjQoAmuOBDjQ15NsqTUxrVAlsWWoMxUDvdtoByVdwefUOknZ1S_0rpzUbq7T8iphdLae79wNZT01Fg2TpsFTtnHHJLQYABNK7mxevL0WtKcXkoz3YX92lczrfYogQjjZSLCo4qn2LOibv_W0HYQwr2kII9pGDfU1hmro4zPTOf6AGbWqH8C8_RhDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193933</pqid></control><display><type>article</type><title>Self-supervised spontaneous latent-based facial expression sequence generation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yap, Chuin Hong ; Yap, Moi Hoon ; Davison, Adrian K. ; Cunningham, Ryan</creator><creatorcontrib>Yap, Chuin Hong ; Yap, Moi Hoon ; Davison, Adrian K. ; Cunningham, Ryan</creatorcontrib><description>In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.</description><identifier>ISSN: 2644-1322</identifier><identifier>EISSN: 2644-1322</identifier><identifier>DOI: 10.1109/OJSP.2023.3275052</identifier><identifier>CODEN: IOJSAF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affective computing ; artificial neural networks ; Faces ; Gold ; Image quality ; Image sequences ; Manual control ; Markov processes ; Mathematical models ; Neural networks ; Random noise ; self-supervised learning ; Task analysis ; Training</subject><ispartof>IEEE open journal of signal processing, 2023-01, Vol.4, p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-61e39becb4b54175a6499dd17dbdcd627ace94cab4524ce98e05519916b588123</cites><orcidid>0000-0003-2251-9308 ; 0000-0001-7681-4287 ; 0000-0001-6883-6515 ; 0000-0002-6496-0209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10127642$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yap, Chuin Hong</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Cunningham, Ryan</creatorcontrib><title>Self-supervised spontaneous latent-based facial expression sequence generation</title><title>IEEE open journal of signal processing</title><addtitle>OJSP</addtitle><description>In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.</description><subject>Affective computing</subject><subject>artificial neural networks</subject><subject>Faces</subject><subject>Gold</subject><subject>Image quality</subject><subject>Image sequences</subject><subject>Manual control</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Random noise</subject><subject>self-supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>2644-1322</issn><issn>2644-1322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaGFhG0-oJCDoWdvNCPJto5laZuEkA2kOYuRNA5eHMuVvKX5-3q7oexpHm_evJnhFcVnEGsAYa63d0-PaxQo1xIbLTSeFRdYK1WBRPxwgs-Ly5x3QgjUAAtxUTw88dBVeT9x-t1nDmWe4jjTyHGfy4FmHufK0aHRke9pKPnPlDjnPo5l5l97Hj2XLzxyonnhPhUfOxoyX77XVfH8_dvPzU11v_1xu_l6X3mp9VzVwNI49k45raDRVCtjQoAmuOBDjQ15NsqTUxrVAlsWWoMxUDvdtoByVdwefUOknZ1S_0rpzUbq7T8iphdLae79wNZT01Fg2TpsFTtnHHJLQYABNK7mxevL0WtKcXkoz3YX92lczrfYogQjjZSLCo4qn2LOibv_W0HYQwr2kII9pGDfU1hmro4zPTOf6AGbWqH8C8_RhDQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yap, Chuin Hong</creator><creator>Yap, Moi Hoon</creator><creator>Davison, Adrian K.</creator><creator>Cunningham, Ryan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2251-9308</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid><orcidid>https://orcid.org/0000-0001-6883-6515</orcidid><orcidid>https://orcid.org/0000-0002-6496-0209</orcidid></search><sort><creationdate>20230101</creationdate><title>Self-supervised spontaneous latent-based facial expression sequence generation</title><author>Yap, Chuin Hong ; Yap, Moi Hoon ; Davison, Adrian K. ; Cunningham, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-61e39becb4b54175a6499dd17dbdcd627ace94cab4524ce98e05519916b588123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affective computing</topic><topic>artificial neural networks</topic><topic>Faces</topic><topic>Gold</topic><topic>Image quality</topic><topic>Image sequences</topic><topic>Manual control</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Random noise</topic><topic>self-supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yap, Chuin Hong</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Cunningham, Ryan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yap, Chuin Hong</au><au>Yap, Moi Hoon</au><au>Davison, Adrian K.</au><au>Cunningham, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-supervised spontaneous latent-based facial expression sequence generation</atitle><jtitle>IEEE open journal of signal processing</jtitle><stitle>OJSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>4</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2644-1322</issn><eissn>2644-1322</eissn><coden>IOJSAF</coden><abstract>In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJSP.2023.3275052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2251-9308</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid><orcidid>https://orcid.org/0000-0001-6883-6515</orcidid><orcidid>https://orcid.org/0000-0002-6496-0209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1322
ispartof IEEE open journal of signal processing, 2023-01, Vol.4, p.1-9
issn 2644-1322
2644-1322
language eng
recordid cdi_ieee_primary_10127642
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Affective computing
artificial neural networks
Faces
Gold
Image quality
Image sequences
Manual control
Markov processes
Mathematical models
Neural networks
Random noise
self-supervised learning
Task analysis
Training
title Self-supervised spontaneous latent-based facial expression sequence generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-supervised%20spontaneous%20latent-based%20facial%20expression%20sequence%20generation&rft.jtitle=IEEE%20open%20journal%20of%20signal%20processing&rft.au=Yap,%20Chuin%20Hong&rft.date=2023-01-01&rft.volume=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2644-1322&rft.eissn=2644-1322&rft.coden=IOJSAF&rft_id=info:doi/10.1109/OJSP.2023.3275052&rft_dat=%3Cproquest_ieee_%3E2823193933%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193933&rft_id=info:pmid/&rft_ieee_id=10127642&rft_doaj_id=oai_doaj_org_article_ca7fade38b284ebb9b2e8ad019129b6e&rfr_iscdi=true