Self-supervised spontaneous latent-based facial expression sequence generation
In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of signal processing 2023-01, Vol.4, p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE open journal of signal processing |
container_volume | 4 |
creator | Yap, Chuin Hong Yap, Moi Hoon Davison, Adrian K. Cunningham, Ryan |
description | In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks. |
doi_str_mv | 10.1109/OJSP.2023.3275052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10127642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10127642</ieee_id><doaj_id>oai_doaj_org_article_ca7fade38b284ebb9b2e8ad019129b6e</doaj_id><sourcerecordid>2823193933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-61e39becb4b54175a6499dd17dbdcd627ace94cab4524ce98e05519916b588123</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaGFhG0-oJCDoWdvNCPJto5laZuEkA2kOYuRNA5eHMuVvKX5-3q7oexpHm_evJnhFcVnEGsAYa63d0-PaxQo1xIbLTSeFRdYK1WBRPxwgs-Ly5x3QgjUAAtxUTw88dBVeT9x-t1nDmWe4jjTyHGfy4FmHufK0aHRke9pKPnPlDjnPo5l5l97Hj2XLzxyonnhPhUfOxoyX77XVfH8_dvPzU11v_1xu_l6X3mp9VzVwNI49k45raDRVCtjQoAmuOBDjQ15NsqTUxrVAlsWWoMxUDvdtoByVdwefUOknZ1S_0rpzUbq7T8iphdLae79wNZT01Fg2TpsFTtnHHJLQYABNK7mxevL0WtKcXkoz3YX92lczrfYogQjjZSLCo4qn2LOibv_W0HYQwr2kII9pGDfU1hmro4zPTOf6AGbWqH8C8_RhDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823193933</pqid></control><display><type>article</type><title>Self-supervised spontaneous latent-based facial expression sequence generation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yap, Chuin Hong ; Yap, Moi Hoon ; Davison, Adrian K. ; Cunningham, Ryan</creator><creatorcontrib>Yap, Chuin Hong ; Yap, Moi Hoon ; Davison, Adrian K. ; Cunningham, Ryan</creatorcontrib><description>In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.</description><identifier>ISSN: 2644-1322</identifier><identifier>EISSN: 2644-1322</identifier><identifier>DOI: 10.1109/OJSP.2023.3275052</identifier><identifier>CODEN: IOJSAF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affective computing ; artificial neural networks ; Faces ; Gold ; Image quality ; Image sequences ; Manual control ; Markov processes ; Mathematical models ; Neural networks ; Random noise ; self-supervised learning ; Task analysis ; Training</subject><ispartof>IEEE open journal of signal processing, 2023-01, Vol.4, p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-61e39becb4b54175a6499dd17dbdcd627ace94cab4524ce98e05519916b588123</cites><orcidid>0000-0003-2251-9308 ; 0000-0001-7681-4287 ; 0000-0001-6883-6515 ; 0000-0002-6496-0209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10127642$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yap, Chuin Hong</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Cunningham, Ryan</creatorcontrib><title>Self-supervised spontaneous latent-based facial expression sequence generation</title><title>IEEE open journal of signal processing</title><addtitle>OJSP</addtitle><description>In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.</description><subject>Affective computing</subject><subject>artificial neural networks</subject><subject>Faces</subject><subject>Gold</subject><subject>Image quality</subject><subject>Image sequences</subject><subject>Manual control</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Random noise</subject><subject>self-supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>2644-1322</issn><issn>2644-1322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaGFhG0-oJCDoWdvNCPJto5laZuEkA2kOYuRNA5eHMuVvKX5-3q7oexpHm_evJnhFcVnEGsAYa63d0-PaxQo1xIbLTSeFRdYK1WBRPxwgs-Ly5x3QgjUAAtxUTw88dBVeT9x-t1nDmWe4jjTyHGfy4FmHufK0aHRke9pKPnPlDjnPo5l5l97Hj2XLzxyonnhPhUfOxoyX77XVfH8_dvPzU11v_1xu_l6X3mp9VzVwNI49k45raDRVCtjQoAmuOBDjQ15NsqTUxrVAlsWWoMxUDvdtoByVdwefUOknZ1S_0rpzUbq7T8iphdLae79wNZT01Fg2TpsFTtnHHJLQYABNK7mxevL0WtKcXkoz3YX92lczrfYogQjjZSLCo4qn2LOibv_W0HYQwr2kII9pGDfU1hmro4zPTOf6AGbWqH8C8_RhDQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yap, Chuin Hong</creator><creator>Yap, Moi Hoon</creator><creator>Davison, Adrian K.</creator><creator>Cunningham, Ryan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2251-9308</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid><orcidid>https://orcid.org/0000-0001-6883-6515</orcidid><orcidid>https://orcid.org/0000-0002-6496-0209</orcidid></search><sort><creationdate>20230101</creationdate><title>Self-supervised spontaneous latent-based facial expression sequence generation</title><author>Yap, Chuin Hong ; Yap, Moi Hoon ; Davison, Adrian K. ; Cunningham, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-61e39becb4b54175a6499dd17dbdcd627ace94cab4524ce98e05519916b588123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affective computing</topic><topic>artificial neural networks</topic><topic>Faces</topic><topic>Gold</topic><topic>Image quality</topic><topic>Image sequences</topic><topic>Manual control</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Random noise</topic><topic>self-supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yap, Chuin Hong</creatorcontrib><creatorcontrib>Yap, Moi Hoon</creatorcontrib><creatorcontrib>Davison, Adrian K.</creatorcontrib><creatorcontrib>Cunningham, Ryan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yap, Chuin Hong</au><au>Yap, Moi Hoon</au><au>Davison, Adrian K.</au><au>Cunningham, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-supervised spontaneous latent-based facial expression sequence generation</atitle><jtitle>IEEE open journal of signal processing</jtitle><stitle>OJSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>4</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2644-1322</issn><eissn>2644-1322</eissn><coden>IOJSAF</coden><abstract>In this paper, we investigate the spontaneity issue in facial expression sequence generation. Current leading methods in the field are commonly reliant on manually adjusted conditional variables to direct the model to generate a specific class of expression. We propose a neural network-based method which uses Gaussian noise to model spontaneity in the generation process, removing the need for manual control of conditional generation variables. Our model takes two sequential images as input, with additive noise, and produces the next image in the sequence. We trained two types of models: single-expression, and mixed-expression. With single-expression, unique facial movements of certain emotion class can be generated; with mixed expressions, fully spontaneous expression sequence generation can be achieved. We compared our method to current leading generation methods on a variety of publicly available datasets. Initial qualitative results show our method produces visually more realistic expressions and facial action unit (AU) trajectories; initial quantitative results using image quality metrics (SSIM and NIQE) show the quality of our generated images is higher. Our approach and results are novel in the field of facial expression generation, with potential wider applications to other sequence generation tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJSP.2023.3275052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2251-9308</orcidid><orcidid>https://orcid.org/0000-0001-7681-4287</orcidid><orcidid>https://orcid.org/0000-0001-6883-6515</orcidid><orcidid>https://orcid.org/0000-0002-6496-0209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1322 |
ispartof | IEEE open journal of signal processing, 2023-01, Vol.4, p.1-9 |
issn | 2644-1322 2644-1322 |
language | eng |
recordid | cdi_ieee_primary_10127642 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Affective computing artificial neural networks Faces Gold Image quality Image sequences Manual control Markov processes Mathematical models Neural networks Random noise self-supervised learning Task analysis Training |
title | Self-supervised spontaneous latent-based facial expression sequence generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-supervised%20spontaneous%20latent-based%20facial%20expression%20sequence%20generation&rft.jtitle=IEEE%20open%20journal%20of%20signal%20processing&rft.au=Yap,%20Chuin%20Hong&rft.date=2023-01-01&rft.volume=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2644-1322&rft.eissn=2644-1322&rft.coden=IOJSAF&rft_id=info:doi/10.1109/OJSP.2023.3275052&rft_dat=%3Cproquest_ieee_%3E2823193933%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823193933&rft_id=info:pmid/&rft_ieee_id=10127642&rft_doaj_id=oai_doaj_org_article_ca7fade38b284ebb9b2e8ad019129b6e&rfr_iscdi=true |