Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image
In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-05, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | |
creator | Kao, Yueying Pan, Bowen Xu, Miao Lyu, Jiangjing Zhu, Xiangyu Chang, Yuanzhang Li, Xiaobo Lei, Zhen |
description | In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face. |
doi_str_mv | 10.1109/TIP.2023.3275535 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10127617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10127617</ieee_id><sourcerecordid>10127617</sourcerecordid><originalsourceid>FETCH-ieee_primary_101276173</originalsourceid><addsrcrecordid>eNqFjLFuwjAURT20ErRlZ2B4P5DUL45j0bVJBANSVGVHVngEI-KH7NCqf9-oZe90dHV0jxBLlCmiXL-22ybNZKZSlRmtlX4Qc5TaJAbz9Uw8xXiWEnONxVycWv6y4RBBlVDbjuCDOvZxDLdudOzBeWgoxCtN85OgCXymX_MGVRzdYEfneyhKrv_uDUeCY-ABduy5u11sgO1ge3oRj0d7ibS481ms6qp93ySOiPbXMKXC9x4lZqZAo_7RP86SRcY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</title><source>IEEE Electronic Library (IEL)</source><creator>Kao, Yueying ; Pan, Bowen ; Xu, Miao ; Lyu, Jiangjing ; Zhu, Xiangyu ; Chang, Yuanzhang ; Li, Xiaobo ; Lei, Zhen</creator><creatorcontrib>Kao, Yueying ; Pan, Bowen ; Xu, Miao ; Lyu, Jiangjing ; Zhu, Xiangyu ; Chang, Yuanzhang ; Li, Xiaobo ; Lei, Zhen</creatorcontrib><description>In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.</description><identifier>ISSN: 1057-7149</identifier><identifier>DOI: 10.1109/TIP.2023.3275535</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D face reconstruction ; 6DoF pose estimation ; perspective projection</subject><ispartof>IEEE transactions on image processing, 2023-05, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8074-0230 ; 0000-0002-4636-9677 ; 0000-0002-0791-189X ; 0000-0002-5796-7541 ; 0000-0002-6461-9553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10127617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10127617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kao, Yueying</creatorcontrib><creatorcontrib>Pan, Bowen</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Lyu, Jiangjing</creatorcontrib><creatorcontrib>Zhu, Xiangyu</creatorcontrib><creatorcontrib>Chang, Yuanzhang</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><title>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.</description><subject>3D face reconstruction</subject><subject>6DoF pose estimation</subject><subject>perspective projection</subject><issn>1057-7149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjLFuwjAURT20ErRlZ2B4P5DUL45j0bVJBANSVGVHVngEI-KH7NCqf9-oZe90dHV0jxBLlCmiXL-22ybNZKZSlRmtlX4Qc5TaJAbz9Uw8xXiWEnONxVycWv6y4RBBlVDbjuCDOvZxDLdudOzBeWgoxCtN85OgCXymX_MGVRzdYEfneyhKrv_uDUeCY-ABduy5u11sgO1ge3oRj0d7ibS481ms6qp93ySOiPbXMKXC9x4lZqZAo_7RP86SRcY</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Kao, Yueying</creator><creator>Pan, Bowen</creator><creator>Xu, Miao</creator><creator>Lyu, Jiangjing</creator><creator>Zhu, Xiangyu</creator><creator>Chang, Yuanzhang</creator><creator>Li, Xiaobo</creator><creator>Lei, Zhen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-8074-0230</orcidid><orcidid>https://orcid.org/0000-0002-4636-9677</orcidid><orcidid>https://orcid.org/0000-0002-0791-189X</orcidid><orcidid>https://orcid.org/0000-0002-5796-7541</orcidid><orcidid>https://orcid.org/0000-0002-6461-9553</orcidid></search><sort><creationdate>20230516</creationdate><title>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</title><author>Kao, Yueying ; Pan, Bowen ; Xu, Miao ; Lyu, Jiangjing ; Zhu, Xiangyu ; Chang, Yuanzhang ; Li, Xiaobo ; Lei, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101276173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D face reconstruction</topic><topic>6DoF pose estimation</topic><topic>perspective projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Yueying</creatorcontrib><creatorcontrib>Pan, Bowen</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Lyu, Jiangjing</creatorcontrib><creatorcontrib>Zhu, Xiangyu</creatorcontrib><creatorcontrib>Chang, Yuanzhang</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kao, Yueying</au><au>Pan, Bowen</au><au>Xu, Miao</au><au>Lyu, Jiangjing</au><au>Zhu, Xiangyu</au><au>Chang, Yuanzhang</au><au>Li, Xiaobo</au><au>Lei, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023-05-16</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><coden>IIPRE4</coden><abstract>In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.</abstract><pub>IEEE</pub><doi>10.1109/TIP.2023.3275535</doi><orcidid>https://orcid.org/0000-0002-8074-0230</orcidid><orcidid>https://orcid.org/0000-0002-4636-9677</orcidid><orcidid>https://orcid.org/0000-0002-0791-189X</orcidid><orcidid>https://orcid.org/0000-0002-5796-7541</orcidid><orcidid>https://orcid.org/0000-0002-6461-9553</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-05, p.1-1 |
issn | 1057-7149 |
language | eng |
recordid | cdi_ieee_primary_10127617 |
source | IEEE Electronic Library (IEL) |
subjects | 3D face reconstruction 6DoF pose estimation perspective projection |
title | Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%203D%20Face%20Reconstruction%20in%20Perspective%20Projection:%20Estimating%206DoF%20Face%20Pose%20from%20Monocular%20Image&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Kao,%20Yueying&rft.date=2023-05-16&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3275535&rft_dat=%3Cieee_RIE%3E10127617%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10127617&rfr_iscdi=true |