Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image

In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-05, p.1-1
Hauptverfasser: Kao, Yueying, Pan, Bowen, Xu, Miao, Lyu, Jiangjing, Zhu, Xiangyu, Chang, Yuanzhang, Li, Xiaobo, Lei, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume
creator Kao, Yueying
Pan, Bowen
Xu, Miao
Lyu, Jiangjing
Zhu, Xiangyu
Chang, Yuanzhang
Li, Xiaobo
Lei, Zhen
description In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.
doi_str_mv 10.1109/TIP.2023.3275535
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10127617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10127617</ieee_id><sourcerecordid>10127617</sourcerecordid><originalsourceid>FETCH-ieee_primary_101276173</originalsourceid><addsrcrecordid>eNqFjLFuwjAURT20ErRlZ2B4P5DUL45j0bVJBANSVGVHVngEI-KH7NCqf9-oZe90dHV0jxBLlCmiXL-22ybNZKZSlRmtlX4Qc5TaJAbz9Uw8xXiWEnONxVycWv6y4RBBlVDbjuCDOvZxDLdudOzBeWgoxCtN85OgCXymX_MGVRzdYEfneyhKrv_uDUeCY-ABduy5u11sgO1ge3oRj0d7ibS481ms6qp93ySOiPbXMKXC9x4lZqZAo_7RP86SRcY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</title><source>IEEE Electronic Library (IEL)</source><creator>Kao, Yueying ; Pan, Bowen ; Xu, Miao ; Lyu, Jiangjing ; Zhu, Xiangyu ; Chang, Yuanzhang ; Li, Xiaobo ; Lei, Zhen</creator><creatorcontrib>Kao, Yueying ; Pan, Bowen ; Xu, Miao ; Lyu, Jiangjing ; Zhu, Xiangyu ; Chang, Yuanzhang ; Li, Xiaobo ; Lei, Zhen</creatorcontrib><description>In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.</description><identifier>ISSN: 1057-7149</identifier><identifier>DOI: 10.1109/TIP.2023.3275535</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D face reconstruction ; 6DoF pose estimation ; perspective projection</subject><ispartof>IEEE transactions on image processing, 2023-05, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8074-0230 ; 0000-0002-4636-9677 ; 0000-0002-0791-189X ; 0000-0002-5796-7541 ; 0000-0002-6461-9553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10127617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10127617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kao, Yueying</creatorcontrib><creatorcontrib>Pan, Bowen</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Lyu, Jiangjing</creatorcontrib><creatorcontrib>Zhu, Xiangyu</creatorcontrib><creatorcontrib>Chang, Yuanzhang</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><title>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.</description><subject>3D face reconstruction</subject><subject>6DoF pose estimation</subject><subject>perspective projection</subject><issn>1057-7149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjLFuwjAURT20ErRlZ2B4P5DUL45j0bVJBANSVGVHVngEI-KH7NCqf9-oZe90dHV0jxBLlCmiXL-22ybNZKZSlRmtlX4Qc5TaJAbz9Uw8xXiWEnONxVycWv6y4RBBlVDbjuCDOvZxDLdudOzBeWgoxCtN85OgCXymX_MGVRzdYEfneyhKrv_uDUeCY-ABduy5u11sgO1ge3oRj0d7ibS481ms6qp93ySOiPbXMKXC9x4lZqZAo_7RP86SRcY</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Kao, Yueying</creator><creator>Pan, Bowen</creator><creator>Xu, Miao</creator><creator>Lyu, Jiangjing</creator><creator>Zhu, Xiangyu</creator><creator>Chang, Yuanzhang</creator><creator>Li, Xiaobo</creator><creator>Lei, Zhen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-8074-0230</orcidid><orcidid>https://orcid.org/0000-0002-4636-9677</orcidid><orcidid>https://orcid.org/0000-0002-0791-189X</orcidid><orcidid>https://orcid.org/0000-0002-5796-7541</orcidid><orcidid>https://orcid.org/0000-0002-6461-9553</orcidid></search><sort><creationdate>20230516</creationdate><title>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</title><author>Kao, Yueying ; Pan, Bowen ; Xu, Miao ; Lyu, Jiangjing ; Zhu, Xiangyu ; Chang, Yuanzhang ; Li, Xiaobo ; Lei, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101276173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D face reconstruction</topic><topic>6DoF pose estimation</topic><topic>perspective projection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Yueying</creatorcontrib><creatorcontrib>Pan, Bowen</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Lyu, Jiangjing</creatorcontrib><creatorcontrib>Zhu, Xiangyu</creatorcontrib><creatorcontrib>Chang, Yuanzhang</creatorcontrib><creatorcontrib>Li, Xiaobo</creatorcontrib><creatorcontrib>Lei, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kao, Yueying</au><au>Pan, Bowen</au><au>Xu, Miao</au><au>Lyu, Jiangjing</au><au>Zhu, Xiangyu</au><au>Chang, Yuanzhang</au><au>Li, Xiaobo</au><au>Lei, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023-05-16</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><coden>IIPRE4</coden><abstract>In 3D face reconstruction, orthogonal projection has been widely employed to substitute perspective projection to simplify the fitting process. This approximation performs well when the distance between camera and face is far enough. However, in some scenarios that the face is very close to camera or moving along the camera axis, the methods suffer from the inaccurate reconstruction and unstable temporal fitting due to the distortion under the perspective projection. In this paper, we aim to address the problem of single-image 3D face reconstruction under perspective projection. Specifically, a deep neural network, Perspective Network (PerspNet), is proposed to simultaneously reconstruct 3D face shape in canonical space and learn the correspondence between 2D pixels and 3D points, by which the 6DoF (6 Degrees of Freedom) face pose can be estimated to represent perspective projection. Besides, we contribute a large ARKitFace dataset to enable the training and evaluation of 3D face reconstruction solutions under the scenarios of perspective projection, which has 902,724 2D facial images with ground-truth 3D face mesh and annotated 6DoF pose parameters. Experimental results show that our approach outperforms current state-of-the-art methods by a significant margin. The code and data are available at https://github.com/cbsropenproject/6dof_face.</abstract><pub>IEEE</pub><doi>10.1109/TIP.2023.3275535</doi><orcidid>https://orcid.org/0000-0002-8074-0230</orcidid><orcidid>https://orcid.org/0000-0002-4636-9677</orcidid><orcidid>https://orcid.org/0000-0002-0791-189X</orcidid><orcidid>https://orcid.org/0000-0002-5796-7541</orcidid><orcidid>https://orcid.org/0000-0002-6461-9553</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023-05, p.1-1
issn 1057-7149
language eng
recordid cdi_ieee_primary_10127617
source IEEE Electronic Library (IEL)
subjects 3D face reconstruction
6DoF pose estimation
perspective projection
title Towards 3D Face Reconstruction in Perspective Projection: Estimating 6DoF Face Pose from Monocular Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%203D%20Face%20Reconstruction%20in%20Perspective%20Projection:%20Estimating%206DoF%20Face%20Pose%20from%20Monocular%20Image&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Kao,%20Yueying&rft.date=2023-05-16&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3275535&rft_dat=%3Cieee_RIE%3E10127617%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10127617&rfr_iscdi=true