Dynamic stability of the liquid-gas interface in micron-sized pores

This paper investigates the dynamic stability of a liquid-gas (or vapor) interface, which occurs in very small diameter pores. The interface is examined under conditions of a static pressure difference across it and a static pressure difference along with a sinusoidal one-dimensional oscillation. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuelei Yang, Gerner, F.M., Henderson, H.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue
container_start_page 1046
container_title
container_volume
creator Yuelei Yang
Gerner, F.M.
Henderson, H.T.
description This paper investigates the dynamic stability of a liquid-gas (or vapor) interface, which occurs in very small diameter pores. The interface is examined under conditions of a static pressure difference across it and a static pressure difference along with a sinusoidal one-dimensional oscillation. The Navier-Stokes equations are applied to the liquid side with assumed no-slip conditions, while the Young-Laplace equation is used to formulate the shape of the interface. This theoretical model calculates both velocity profiles in the liquid side and transient profiles of the interface itself; and of particular interest, it predicts the pressure difference, oscillation frequency and amplitude required to burst this interface (sometimes referred to as bubble burst through).
doi_str_mv 10.1109/ITHERM.2002.1012573
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1012573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1012573</ieee_id><sourcerecordid>1012573</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e9dee7c409da7fc4df8abba07ec7caea0d4f0f9375316e78dcb6b8ef7889a6763</originalsourceid><addsrcrecordid>eNotj8FOwzAQRC0BEqX0C3rxDzis4yRrH1EptFIREirnyrHXYJQmJQ6H8PVEaucy7zB60jC2lJBJCeZhu9-s31-zHCDPJMi8RHXF7gA1KJRlXl2zmQRthNEIt2yR0jdMKcoCSjVjq6extcfoeBpsHZs4jLwLfPgi3sSf3-jFp008tgP1wTqaiE_jvmtFin_k-anrKd2zm2CbRItLz9nH83q_2ojd28t29bgTUWI5CDKeCF0BxlsMrvBB27q2gOTQWbLgiwDBKCyVrAi1d3VVawqotbEVVmrOlmdvJKLDqY9H24-Hy2f1D_a_TLk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic stability of the liquid-gas interface in micron-sized pores</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuelei Yang ; Gerner, F.M. ; Henderson, H.T.</creator><creatorcontrib>Yuelei Yang ; Gerner, F.M. ; Henderson, H.T.</creatorcontrib><description>This paper investigates the dynamic stability of a liquid-gas (or vapor) interface, which occurs in very small diameter pores. The interface is examined under conditions of a static pressure difference across it and a static pressure difference along with a sinusoidal one-dimensional oscillation. The Navier-Stokes equations are applied to the liquid side with assumed no-slip conditions, while the Young-Laplace equation is used to formulate the shape of the interface. This theoretical model calculates both velocity profiles in the liquid side and transient profiles of the interface itself; and of particular interest, it predicts the pressure difference, oscillation frequency and amplitude required to burst this interface (sometimes referred to as bubble burst through).</description><identifier>ISSN: 1089-9870</identifier><identifier>ISBN: 0780371526</identifier><identifier>ISBN: 9780780371521</identifier><identifier>DOI: 10.1109/ITHERM.2002.1012573</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Computer science ; Frequency ; Kinetic theory ; Navier-Stokes equations ; Predictive models ; Shape ; Stability ; Surface tension ; Viscosity</subject><ispartof>ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), 2002, p.1046-1051</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1012573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1012573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuelei Yang</creatorcontrib><creatorcontrib>Gerner, F.M.</creatorcontrib><creatorcontrib>Henderson, H.T.</creatorcontrib><title>Dynamic stability of the liquid-gas interface in micron-sized pores</title><title>ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)</title><addtitle>ITHERM</addtitle><description>This paper investigates the dynamic stability of a liquid-gas (or vapor) interface, which occurs in very small diameter pores. The interface is examined under conditions of a static pressure difference across it and a static pressure difference along with a sinusoidal one-dimensional oscillation. The Navier-Stokes equations are applied to the liquid side with assumed no-slip conditions, while the Young-Laplace equation is used to formulate the shape of the interface. This theoretical model calculates both velocity profiles in the liquid side and transient profiles of the interface itself; and of particular interest, it predicts the pressure difference, oscillation frequency and amplitude required to burst this interface (sometimes referred to as bubble burst through).</description><subject>Acceleration</subject><subject>Computer science</subject><subject>Frequency</subject><subject>Kinetic theory</subject><subject>Navier-Stokes equations</subject><subject>Predictive models</subject><subject>Shape</subject><subject>Stability</subject><subject>Surface tension</subject><subject>Viscosity</subject><issn>1089-9870</issn><isbn>0780371526</isbn><isbn>9780780371521</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FOwzAQRC0BEqX0C3rxDzis4yRrH1EptFIREirnyrHXYJQmJQ6H8PVEaucy7zB60jC2lJBJCeZhu9-s31-zHCDPJMi8RHXF7gA1KJRlXl2zmQRthNEIt2yR0jdMKcoCSjVjq6extcfoeBpsHZs4jLwLfPgi3sSf3-jFp008tgP1wTqaiE_jvmtFin_k-anrKd2zm2CbRItLz9nH83q_2ojd28t29bgTUWI5CDKeCF0BxlsMrvBB27q2gOTQWbLgiwDBKCyVrAi1d3VVawqotbEVVmrOlmdvJKLDqY9H24-Hy2f1D_a_TLk</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Yuelei Yang</creator><creator>Gerner, F.M.</creator><creator>Henderson, H.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Dynamic stability of the liquid-gas interface in micron-sized pores</title><author>Yuelei Yang ; Gerner, F.M. ; Henderson, H.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e9dee7c409da7fc4df8abba07ec7caea0d4f0f9375316e78dcb6b8ef7889a6763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acceleration</topic><topic>Computer science</topic><topic>Frequency</topic><topic>Kinetic theory</topic><topic>Navier-Stokes equations</topic><topic>Predictive models</topic><topic>Shape</topic><topic>Stability</topic><topic>Surface tension</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuelei Yang</creatorcontrib><creatorcontrib>Gerner, F.M.</creatorcontrib><creatorcontrib>Henderson, H.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuelei Yang</au><au>Gerner, F.M.</au><au>Henderson, H.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic stability of the liquid-gas interface in micron-sized pores</atitle><btitle>ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)</btitle><stitle>ITHERM</stitle><date>2002</date><risdate>2002</risdate><spage>1046</spage><epage>1051</epage><pages>1046-1051</pages><issn>1089-9870</issn><isbn>0780371526</isbn><isbn>9780780371521</isbn><abstract>This paper investigates the dynamic stability of a liquid-gas (or vapor) interface, which occurs in very small diameter pores. The interface is examined under conditions of a static pressure difference across it and a static pressure difference along with a sinusoidal one-dimensional oscillation. The Navier-Stokes equations are applied to the liquid side with assumed no-slip conditions, while the Young-Laplace equation is used to formulate the shape of the interface. This theoretical model calculates both velocity profiles in the liquid side and transient profiles of the interface itself; and of particular interest, it predicts the pressure difference, oscillation frequency and amplitude required to burst this interface (sometimes referred to as bubble burst through).</abstract><pub>IEEE</pub><doi>10.1109/ITHERM.2002.1012573</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-9870
ispartof ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), 2002, p.1046-1051
issn 1089-9870
language eng
recordid cdi_ieee_primary_1012573
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Computer science
Frequency
Kinetic theory
Navier-Stokes equations
Predictive models
Shape
Stability
Surface tension
Viscosity
title Dynamic stability of the liquid-gas interface in micron-sized pores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20stability%20of%20the%20liquid-gas%20interface%20in%20micron-sized%20pores&rft.btitle=ITherm%202002.%20Eighth%20Intersociety%20Conference%20on%20Thermal%20and%20Thermomechanical%20Phenomena%20in%20Electronic%20Systems%20(Cat.%20No.02CH37258)&rft.au=Yuelei%20Yang&rft.date=2002&rft.spage=1046&rft.epage=1051&rft.pages=1046-1051&rft.issn=1089-9870&rft.isbn=0780371526&rft.isbn_list=9780780371521&rft_id=info:doi/10.1109/ITHERM.2002.1012573&rft_dat=%3Cieee_6IE%3E1012573%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1012573&rfr_iscdi=true