Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction
Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies hav...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive and developmental systems 2024-04, Vol.16 (2), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | 16 |
creator | Cao, Ran Cheng, Long Li, Houcheng |
description | Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot. |
doi_str_mv | 10.1109/TCDS.2023.3275217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10123073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10123073</ieee_id><sourcerecordid>3033619965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-64355296e99762f901c7370f0ec02209337ad264a366293940c750be8f3500ba3</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4soOOb-AMGHgM-dl1ybLI9Sf2wwcbj5HLL0ih1bM5NO2H9vy4b4dMfx_dxxnyS55TDmHPTDqnhajgUIHKNQueDqIhkIVDqdaNSXf72A62QU4wYAuEQ1ydQgWS1sjPUPsTdf0pYtApW1a_vBbLen0jaOWOGbNvgtq3xgS1sRW3wdY-3slk0PO9ukH37tWzZrWgq2Y31zk1xVdhtpdK7D5PPleVVM0_n766x4nKdOZLJNZYZ5LrQkrZUUlQbuFCqogBwIARpR2VLIzKKUovskA6dyWNOkwhxgbXGY3J_27oP_PlBszcYfQtOdNAiIkmst8y7FTykXfIyBKrMP9c6Go-Fgen-m92d6f-bsr2PuTkxNRP_yXCAoxF8r2GnJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033619965</pqid></control><display><type>article</type><title>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Ran ; Cheng, Long ; Li, Houcheng</creator><creatorcontrib>Cao, Ran ; Cheng, Long ; Li, Houcheng</creatorcontrib><description>Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2023.3275217</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace electronics ; Closed loops ; Control methods ; Control systems design ; Controllers ; Human behavior ; Human motion ; Human-robot interaction ; Impedance ; impedance control ; Internal energy ; model predictive control ; passivity ; Physical human-robot interaction ; Predictive control ; Predictive models ; Robots ; Stiffness ; Task analysis ; Torque</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-04, Vol.16 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-64355296e99762f901c7370f0ec02209337ad264a366293940c750be8f3500ba3</cites><orcidid>0000-0001-7565-8788 ; 0000-0002-8176-9772 ; 0000-0001-7956-9408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10123073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10123073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Li, Houcheng</creatorcontrib><title>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.</description><subject>Aerospace electronics</subject><subject>Closed loops</subject><subject>Control methods</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Human behavior</subject><subject>Human motion</subject><subject>Human-robot interaction</subject><subject>Impedance</subject><subject>impedance control</subject><subject>Internal energy</subject><subject>model predictive control</subject><subject>passivity</subject><subject>Physical human-robot interaction</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robots</subject><subject>Stiffness</subject><subject>Task analysis</subject><subject>Torque</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4soOOb-AMGHgM-dl1ybLI9Sf2wwcbj5HLL0ih1bM5NO2H9vy4b4dMfx_dxxnyS55TDmHPTDqnhajgUIHKNQueDqIhkIVDqdaNSXf72A62QU4wYAuEQ1ydQgWS1sjPUPsTdf0pYtApW1a_vBbLen0jaOWOGbNvgtq3xgS1sRW3wdY-3slk0PO9ukH37tWzZrWgq2Y31zk1xVdhtpdK7D5PPleVVM0_n766x4nKdOZLJNZYZ5LrQkrZUUlQbuFCqogBwIARpR2VLIzKKUovskA6dyWNOkwhxgbXGY3J_27oP_PlBszcYfQtOdNAiIkmst8y7FTykXfIyBKrMP9c6Go-Fgen-m92d6f-bsr2PuTkxNRP_yXCAoxF8r2GnJ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cao, Ran</creator><creator>Cheng, Long</creator><creator>Li, Houcheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0000-0002-8176-9772</orcidid><orcidid>https://orcid.org/0000-0001-7956-9408</orcidid></search><sort><creationdate>20240401</creationdate><title>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</title><author>Cao, Ran ; Cheng, Long ; Li, Houcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-64355296e99762f901c7370f0ec02209337ad264a366293940c750be8f3500ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace electronics</topic><topic>Closed loops</topic><topic>Control methods</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Human behavior</topic><topic>Human motion</topic><topic>Human-robot interaction</topic><topic>Impedance</topic><topic>impedance control</topic><topic>Internal energy</topic><topic>model predictive control</topic><topic>passivity</topic><topic>Physical human-robot interaction</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robots</topic><topic>Stiffness</topic><topic>Task analysis</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Li, Houcheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Ran</au><au>Cheng, Long</au><au>Li, Houcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2023.3275217</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0000-0002-8176-9772</orcidid><orcidid>https://orcid.org/0000-0001-7956-9408</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2024-04, Vol.16 (2), p.1-1 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_ieee_primary_10123073 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace electronics Closed loops Control methods Control systems design Controllers Human behavior Human motion Human-robot interaction Impedance impedance control Internal energy model predictive control passivity Physical human-robot interaction Predictive control Predictive models Robots Stiffness Task analysis Torque |
title | Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20Model%20Predictive%20Impedance%20Control%20for%20Safe%20Physical%20Human-Robot%20Interaction&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Cao,%20Ran&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2023.3275217&rft_dat=%3Cproquest_RIE%3E3033619965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033619965&rft_id=info:pmid/&rft_ieee_id=10123073&rfr_iscdi=true |