Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction

Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2024-04, Vol.16 (2), p.1-1
Hauptverfasser: Cao, Ran, Cheng, Long, Li, Houcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 2
container_start_page 1
container_title IEEE transactions on cognitive and developmental systems
container_volume 16
creator Cao, Ran
Cheng, Long
Li, Houcheng
description Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.
doi_str_mv 10.1109/TCDS.2023.3275217
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10123073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10123073</ieee_id><sourcerecordid>3033619965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-64355296e99762f901c7370f0ec02209337ad264a366293940c750be8f3500ba3</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4soOOb-AMGHgM-dl1ybLI9Sf2wwcbj5HLL0ih1bM5NO2H9vy4b4dMfx_dxxnyS55TDmHPTDqnhajgUIHKNQueDqIhkIVDqdaNSXf72A62QU4wYAuEQ1ydQgWS1sjPUPsTdf0pYtApW1a_vBbLen0jaOWOGbNvgtq3xgS1sRW3wdY-3slk0PO9ukH37tWzZrWgq2Y31zk1xVdhtpdK7D5PPleVVM0_n766x4nKdOZLJNZYZ5LrQkrZUUlQbuFCqogBwIARpR2VLIzKKUovskA6dyWNOkwhxgbXGY3J_27oP_PlBszcYfQtOdNAiIkmst8y7FTykXfIyBKrMP9c6Go-Fgen-m92d6f-bsr2PuTkxNRP_yXCAoxF8r2GnJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033619965</pqid></control><display><type>article</type><title>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Ran ; Cheng, Long ; Li, Houcheng</creator><creatorcontrib>Cao, Ran ; Cheng, Long ; Li, Houcheng</creatorcontrib><description>Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2023.3275217</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace electronics ; Closed loops ; Control methods ; Control systems design ; Controllers ; Human behavior ; Human motion ; Human-robot interaction ; Impedance ; impedance control ; Internal energy ; model predictive control ; passivity ; Physical human-robot interaction ; Predictive control ; Predictive models ; Robots ; Stiffness ; Task analysis ; Torque</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-04, Vol.16 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-64355296e99762f901c7370f0ec02209337ad264a366293940c750be8f3500ba3</cites><orcidid>0000-0001-7565-8788 ; 0000-0002-8176-9772 ; 0000-0001-7956-9408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10123073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10123073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Li, Houcheng</creatorcontrib><title>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.</description><subject>Aerospace electronics</subject><subject>Closed loops</subject><subject>Control methods</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Human behavior</subject><subject>Human motion</subject><subject>Human-robot interaction</subject><subject>Impedance</subject><subject>impedance control</subject><subject>Internal energy</subject><subject>model predictive control</subject><subject>passivity</subject><subject>Physical human-robot interaction</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robots</subject><subject>Stiffness</subject><subject>Task analysis</subject><subject>Torque</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4soOOb-AMGHgM-dl1ybLI9Sf2wwcbj5HLL0ih1bM5NO2H9vy4b4dMfx_dxxnyS55TDmHPTDqnhajgUIHKNQueDqIhkIVDqdaNSXf72A62QU4wYAuEQ1ydQgWS1sjPUPsTdf0pYtApW1a_vBbLen0jaOWOGbNvgtq3xgS1sRW3wdY-3slk0PO9ukH37tWzZrWgq2Y31zk1xVdhtpdK7D5PPleVVM0_n766x4nKdOZLJNZYZ5LrQkrZUUlQbuFCqogBwIARpR2VLIzKKUovskA6dyWNOkwhxgbXGY3J_27oP_PlBszcYfQtOdNAiIkmst8y7FTykXfIyBKrMP9c6Go-Fgen-m92d6f-bsr2PuTkxNRP_yXCAoxF8r2GnJ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cao, Ran</creator><creator>Cheng, Long</creator><creator>Li, Houcheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0000-0002-8176-9772</orcidid><orcidid>https://orcid.org/0000-0001-7956-9408</orcidid></search><sort><creationdate>20240401</creationdate><title>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</title><author>Cao, Ran ; Cheng, Long ; Li, Houcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-64355296e99762f901c7370f0ec02209337ad264a366293940c750be8f3500ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace electronics</topic><topic>Closed loops</topic><topic>Control methods</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Human behavior</topic><topic>Human motion</topic><topic>Human-robot interaction</topic><topic>Impedance</topic><topic>impedance control</topic><topic>Internal energy</topic><topic>model predictive control</topic><topic>passivity</topic><topic>Physical human-robot interaction</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robots</topic><topic>Stiffness</topic><topic>Task analysis</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Ran</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Li, Houcheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Ran</au><au>Cheng, Long</au><au>Li, Houcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Various cognitive systems have been designed to model the position and stiffness profiles of human behavior and then to drive robots by mimicking the human's behavior to accomplish physical human-robot interaction tasks through a properly designed impedance controller. However, some studies have shown that variable stiffness parameters of the impedance controller can cause the violation of the passivity constraint of the robot states, and make the robot's stored energy exceed the external energy injected from the human user, thus leading to the unsafe human-robot interaction. To solve this problem, this paper proposes a novel passive model predictive impedance control method including two control loops. In the bottom-loop of the proposed controller, the robot is driven by a variable impedance controller to achieve the desired compliant interaction behavior. In the top-loop of the proposed controller, the model predictive control (MPC) is used to ensure that the robot states satisfy the passivity constraint by calculating a complementary torque to limit the stored energy of the robot. The passivity of the closed-loop robot system and the feasibility of MPC are guaranteed by theoretical analysis, ensuring the safety of the robotic movement in the human-robot interaction. The effectiveness of the proposed method is demonstrated by the simulation and experiment on the Franka Emika Panda robot.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2023.3275217</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0000-0002-8176-9772</orcidid><orcidid>https://orcid.org/0000-0001-7956-9408</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2024-04, Vol.16 (2), p.1-1
issn 2379-8920
2379-8939
language eng
recordid cdi_ieee_primary_10123073
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Closed loops
Control methods
Control systems design
Controllers
Human behavior
Human motion
Human-robot interaction
Impedance
impedance control
Internal energy
model predictive control
passivity
Physical human-robot interaction
Predictive control
Predictive models
Robots
Stiffness
Task analysis
Torque
title Passive Model Predictive Impedance Control for Safe Physical Human-Robot Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20Model%20Predictive%20Impedance%20Control%20for%20Safe%20Physical%20Human-Robot%20Interaction&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Cao,%20Ran&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2023.3275217&rft_dat=%3Cproquest_RIE%3E3033619965%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033619965&rft_id=info:pmid/&rft_ieee_id=10123073&rfr_iscdi=true