Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application

This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Mismar, Faris B., Gundogan, Alperen, Kaya, Aliye Ozge, Chistyakov, Oleg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Mismar, Faris B.
Gundogan, Alperen
Kaya, Aliye Ozge
Chistyakov, Oleg
description This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.
doi_str_mv 10.1109/ACCESS.2023.3274810
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10122528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122528</ieee_id><doaj_id>oai_doaj_org_article_2d0191dd15e7426aac2eecc42062f78e</doaj_id><sourcerecordid>2815684315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d790a19aa689b183c67195ccae2b73760d8887617b5602941ae7e74df70be6333</originalsourceid><addsrcrecordid>eNpNkE9r20AQxUVoIMHJJ0gOCz3L3dnV_uvNdV3b4JJAkvMyXo3CGkerruRAv32VKoTMZYbHvN8MryhugM8BuPu2WC5XDw9zwYWcS2EqC_ysuBSgXSmV1F8-zRfFdd8f-Fh2lJS5LFY_iTq2I8xtbJ9ZkzL7fToOsXzqKbP7nDAM8ZXYD8IXtsG2Tk3znS2YXrNF1x1jwCGm9qo4b_DY0_V7nxVPv1aPy025u1tvl4tdGaRyQ1kbxxEcorZuD1YGbcCpEJDE3kijeW2tNRrMXmkuXAVIhkxVN4bvSUspZ8V24tYJD77L8QXzX58w-v9Cys8e8xDDkbyoOTioa1AjQWjEIIhCqATXojGWRtbXidXl9OdE_eAP6ZTb8X0vLChtKwlq3JLTVsip7zM1H1eB-7f4_RS_f4vfv8c_um4nVySiTw4QQgkr_wGbR329</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815684315</pqid></control><display><type>article</type><title>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mismar, Faris B. ; Gundogan, Alperen ; Kaya, Aliye Ozge ; Chistyakov, Oleg</creator><creatorcontrib>Mismar, Faris B. ; Gundogan, Alperen ; Kaya, Aliye Ozge ; Chistyakov, Oleg</creatorcontrib><description>This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3274810</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>6G mobile communication ; Base stations ; Beamforming ; Deep learning ; handoff ; Handover ; Performance prediction ; predictive ; radio resource management ; Recurrent neural networks ; Switches ; Trajectory ; transfer learning</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-d790a19aa689b183c67195ccae2b73760d8887617b5602941ae7e74df70be6333</cites><orcidid>0000-0002-8850-4718 ; 0000-0001-9343-3849 ; 0009-0005-3108-8118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122528$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Mismar, Faris B.</creatorcontrib><creatorcontrib>Gundogan, Alperen</creatorcontrib><creatorcontrib>Kaya, Aliye Ozge</creatorcontrib><creatorcontrib>Chistyakov, Oleg</creatorcontrib><title>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.</description><subject>6G mobile communication</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Deep learning</subject><subject>handoff</subject><subject>Handover</subject><subject>Performance prediction</subject><subject>predictive</subject><subject>radio resource management</subject><subject>Recurrent neural networks</subject><subject>Switches</subject><subject>Trajectory</subject><subject>transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9r20AQxUVoIMHJJ0gOCz3L3dnV_uvNdV3b4JJAkvMyXo3CGkerruRAv32VKoTMZYbHvN8MryhugM8BuPu2WC5XDw9zwYWcS2EqC_ysuBSgXSmV1F8-zRfFdd8f-Fh2lJS5LFY_iTq2I8xtbJ9ZkzL7fToOsXzqKbP7nDAM8ZXYD8IXtsG2Tk3znS2YXrNF1x1jwCGm9qo4b_DY0_V7nxVPv1aPy025u1tvl4tdGaRyQ1kbxxEcorZuD1YGbcCpEJDE3kijeW2tNRrMXmkuXAVIhkxVN4bvSUspZ8V24tYJD77L8QXzX58w-v9Cys8e8xDDkbyoOTioa1AjQWjEIIhCqATXojGWRtbXidXl9OdE_eAP6ZTb8X0vLChtKwlq3JLTVsip7zM1H1eB-7f4_RS_f4vfv8c_um4nVySiTw4QQgkr_wGbR329</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mismar, Faris B.</creator><creator>Gundogan, Alperen</creator><creator>Kaya, Aliye Ozge</creator><creator>Chistyakov, Oleg</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8850-4718</orcidid><orcidid>https://orcid.org/0000-0001-9343-3849</orcidid><orcidid>https://orcid.org/0009-0005-3108-8118</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</title><author>Mismar, Faris B. ; Gundogan, Alperen ; Kaya, Aliye Ozge ; Chistyakov, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d790a19aa689b183c67195ccae2b73760d8887617b5602941ae7e74df70be6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6G mobile communication</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Deep learning</topic><topic>handoff</topic><topic>Handover</topic><topic>Performance prediction</topic><topic>predictive</topic><topic>radio resource management</topic><topic>Recurrent neural networks</topic><topic>Switches</topic><topic>Trajectory</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mismar, Faris B.</creatorcontrib><creatorcontrib>Gundogan, Alperen</creatorcontrib><creatorcontrib>Kaya, Aliye Ozge</creatorcontrib><creatorcontrib>Chistyakov, Oleg</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mismar, Faris B.</au><au>Gundogan, Alperen</au><au>Kaya, Aliye Ozge</au><au>Chistyakov, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3274810</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8850-4718</orcidid><orcidid>https://orcid.org/0000-0001-9343-3849</orcidid><orcidid>https://orcid.org/0009-0005-3108-8118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10122528
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 6G mobile communication
Base stations
Beamforming
Deep learning
handoff
Handover
Performance prediction
predictive
radio resource management
Recurrent neural networks
Switches
Trajectory
transfer learning
title Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Multi-User%20Proactive%20Beam%20Handoff:%20A%206G%20Application&rft.jtitle=IEEE%20access&rft.au=Mismar,%20Faris%20B.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3274810&rft_dat=%3Cproquest_ieee_%3E2815684315%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815684315&rft_id=info:pmid/&rft_ieee_id=10122528&rft_doaj_id=oai_doaj_org_article_2d0191dd15e7426aac2eecc42062f78e&rfr_iscdi=true