Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application
This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) r...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Mismar, Faris B. Gundogan, Alperen Kaya, Aliye Ozge Chistyakov, Oleg |
description | This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories. |
doi_str_mv | 10.1109/ACCESS.2023.3274810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10122528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122528</ieee_id><doaj_id>oai_doaj_org_article_2d0191dd15e7426aac2eecc42062f78e</doaj_id><sourcerecordid>2815684315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d790a19aa689b183c67195ccae2b73760d8887617b5602941ae7e74df70be6333</originalsourceid><addsrcrecordid>eNpNkE9r20AQxUVoIMHJJ0gOCz3L3dnV_uvNdV3b4JJAkvMyXo3CGkerruRAv32VKoTMZYbHvN8MryhugM8BuPu2WC5XDw9zwYWcS2EqC_ysuBSgXSmV1F8-zRfFdd8f-Fh2lJS5LFY_iTq2I8xtbJ9ZkzL7fToOsXzqKbP7nDAM8ZXYD8IXtsG2Tk3znS2YXrNF1x1jwCGm9qo4b_DY0_V7nxVPv1aPy025u1tvl4tdGaRyQ1kbxxEcorZuD1YGbcCpEJDE3kijeW2tNRrMXmkuXAVIhkxVN4bvSUspZ8V24tYJD77L8QXzX58w-v9Cys8e8xDDkbyoOTioa1AjQWjEIIhCqATXojGWRtbXidXl9OdE_eAP6ZTb8X0vLChtKwlq3JLTVsip7zM1H1eB-7f4_RS_f4vfv8c_um4nVySiTw4QQgkr_wGbR329</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815684315</pqid></control><display><type>article</type><title>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mismar, Faris B. ; Gundogan, Alperen ; Kaya, Aliye Ozge ; Chistyakov, Oleg</creator><creatorcontrib>Mismar, Faris B. ; Gundogan, Alperen ; Kaya, Aliye Ozge ; Chistyakov, Oleg</creatorcontrib><description>This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3274810</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>6G mobile communication ; Base stations ; Beamforming ; Deep learning ; handoff ; Handover ; Performance prediction ; predictive ; radio resource management ; Recurrent neural networks ; Switches ; Trajectory ; transfer learning</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-d790a19aa689b183c67195ccae2b73760d8887617b5602941ae7e74df70be6333</cites><orcidid>0000-0002-8850-4718 ; 0000-0001-9343-3849 ; 0009-0005-3108-8118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122528$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Mismar, Faris B.</creatorcontrib><creatorcontrib>Gundogan, Alperen</creatorcontrib><creatorcontrib>Kaya, Aliye Ozge</creatorcontrib><creatorcontrib>Chistyakov, Oleg</creatorcontrib><title>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.</description><subject>6G mobile communication</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Deep learning</subject><subject>handoff</subject><subject>Handover</subject><subject>Performance prediction</subject><subject>predictive</subject><subject>radio resource management</subject><subject>Recurrent neural networks</subject><subject>Switches</subject><subject>Trajectory</subject><subject>transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9r20AQxUVoIMHJJ0gOCz3L3dnV_uvNdV3b4JJAkvMyXo3CGkerruRAv32VKoTMZYbHvN8MryhugM8BuPu2WC5XDw9zwYWcS2EqC_ysuBSgXSmV1F8-zRfFdd8f-Fh2lJS5LFY_iTq2I8xtbJ9ZkzL7fToOsXzqKbP7nDAM8ZXYD8IXtsG2Tk3znS2YXrNF1x1jwCGm9qo4b_DY0_V7nxVPv1aPy025u1tvl4tdGaRyQ1kbxxEcorZuD1YGbcCpEJDE3kijeW2tNRrMXmkuXAVIhkxVN4bvSUspZ8V24tYJD77L8QXzX58w-v9Cys8e8xDDkbyoOTioa1AjQWjEIIhCqATXojGWRtbXidXl9OdE_eAP6ZTb8X0vLChtKwlq3JLTVsip7zM1H1eB-7f4_RS_f4vfv8c_um4nVySiTw4QQgkr_wGbR329</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mismar, Faris B.</creator><creator>Gundogan, Alperen</creator><creator>Kaya, Aliye Ozge</creator><creator>Chistyakov, Oleg</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8850-4718</orcidid><orcidid>https://orcid.org/0000-0001-9343-3849</orcidid><orcidid>https://orcid.org/0009-0005-3108-8118</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</title><author>Mismar, Faris B. ; Gundogan, Alperen ; Kaya, Aliye Ozge ; Chistyakov, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d790a19aa689b183c67195ccae2b73760d8887617b5602941ae7e74df70be6333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6G mobile communication</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Deep learning</topic><topic>handoff</topic><topic>Handover</topic><topic>Performance prediction</topic><topic>predictive</topic><topic>radio resource management</topic><topic>Recurrent neural networks</topic><topic>Switches</topic><topic>Trajectory</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mismar, Faris B.</creatorcontrib><creatorcontrib>Gundogan, Alperen</creatorcontrib><creatorcontrib>Kaya, Aliye Ozge</creatorcontrib><creatorcontrib>Chistyakov, Oleg</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mismar, Faris B.</au><au>Gundogan, Alperen</au><au>Kaya, Aliye Ozge</au><au>Chistyakov, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper demonstrates the use of deep learning and time series data generated from user equipment (UE) beam measurements and positions collected by the base station (BS) to enable handoffs between beams that belong to the same or different BSs. We propose the use of long short-term memory (LSTM) recurrent neural networks with three different approaches and vary the number of lookbacks of the beam measurements to study the performance of the prediction used for the proactive beam handoff. Simulations show that while UE positions can improve the prediction performance, it is only up to a certain point. At a sufficiently large number of lookbacks, the UE positions become irrelevant to the prediction accuracy since the LSTMs are able to learn the optimal beam based on implicitly defined positions from the time-defined trajectories.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3274810</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8850-4718</orcidid><orcidid>https://orcid.org/0000-0001-9343-3849</orcidid><orcidid>https://orcid.org/0009-0005-3108-8118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10122528 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 6G mobile communication Base stations Beamforming Deep learning handoff Handover Performance prediction predictive radio resource management Recurrent neural networks Switches Trajectory transfer learning |
title | Deep Learning for Multi-User Proactive Beam Handoff: A 6G Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Multi-User%20Proactive%20Beam%20Handoff:%20A%206G%20Application&rft.jtitle=IEEE%20access&rft.au=Mismar,%20Faris%20B.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3274810&rft_dat=%3Cproquest_ieee_%3E2815684315%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815684315&rft_id=info:pmid/&rft_ieee_id=10122528&rft_doaj_id=oai_doaj_org_article_2d0191dd15e7426aac2eecc42062f78e&rfr_iscdi=true |