All-Solid-State Nanosecond Pulse Power Supply Based on BLTs and Pulse Transformer for DBD Application
Nanosecond(ns) pulses have been proven to drive DBD more efficiently. However, since the DBD device is a capacitive load, which will cause distortions in the pulse waveform of the power supply. To maintain the ns pulse waveform, a parallel resistor is normally set to overcome the influence of DBD lo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2023-08, Vol.38 (8), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Gui, Hao Zhao, Zhongyong Shi, Qing Liu, Xin Yao, Chenguo |
description | Nanosecond(ns) pulses have been proven to drive DBD more efficiently. However, since the DBD device is a capacitive load, which will cause distortions in the pulse waveform of the power supply. To maintain the ns pulse waveform, a parallel resistor is normally set to overcome the influence of DBD loads in the traditional methods, which will cause extra energy loss. This paper proposed a bipolar ns pulse power supply for DBD based on Blumlein transmission lines (BLTs) and pulse transformer. It does not need to set a parallel resistor and can adapt well to the load characteristics of DBD. This topology can output bipolar ns pulses on DBD loads with a rise time of 100 ns, a pulse width of 300 ns, an adjustable amplitude of 0-5 kV, and a maximum repetition frequency of 20 kHz. In this context, the operating characteristics of the circuit are derived based on the lossless transmission line model and Laplace transform, and then the correctness of the theoretical derivation is verified by the prototype. The results showed that the proposed ns power supply can drive DBD loads with adjustable output voltage amplitude and frequency. |
doi_str_mv | 10.1109/TPEL.2023.3274451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10122155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122155</ieee_id><sourcerecordid>2828941266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-978cf4170a971f717592da343f77a8435986cdd8c6c2b7798c16a146d74290be3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUR4MoOKcfQPAh4HNnbpo2yeM25x8oOlh9DlmaQkfX1KRF9u3N2BCffi_n3AsHoXsgMwAin8r1qphRQtNZSjljGVygCUgGCQHCL9GECJElQsr0Gt2EsCMEWEZgguy8bZONa5sq2Qx6sPhDdy5Y47oKr8c2WLx2P9bjzdj37QEvdLAVdh1eFGXA-g8qve5C7fw-onHw8-IZz6PRGD00rrtFV7WO3N15p-jrZVUu35Li8_V9OS8SQyUbEsmFqRlwoiWHmgPPJK10ytKacy1YmkmRm6oSJjd0y7kUBnINLK84o5JsbTpFj6e7vXffow2D2rnRd_GlooKK2IPmeaTgRBnvQvC2Vr1v9tofFBB1rKmONdWxpjrXjM7DyWmstf94oBSyLP0FI-lvJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828941266</pqid></control><display><type>article</type><title>All-Solid-State Nanosecond Pulse Power Supply Based on BLTs and Pulse Transformer for DBD Application</title><source>IEEE Electronic Library (IEL)</source><creator>Gui, Hao ; Zhao, Zhongyong ; Shi, Qing ; Liu, Xin ; Yao, Chenguo</creator><creatorcontrib>Gui, Hao ; Zhao, Zhongyong ; Shi, Qing ; Liu, Xin ; Yao, Chenguo</creatorcontrib><description>Nanosecond(ns) pulses have been proven to drive DBD more efficiently. However, since the DBD device is a capacitive load, which will cause distortions in the pulse waveform of the power supply. To maintain the ns pulse waveform, a parallel resistor is normally set to overcome the influence of DBD loads in the traditional methods, which will cause extra energy loss. This paper proposed a bipolar ns pulse power supply for DBD based on Blumlein transmission lines (BLTs) and pulse transformer. It does not need to set a parallel resistor and can adapt well to the load characteristics of DBD. This topology can output bipolar ns pulses on DBD loads with a rise time of 100 ns, a pulse width of 300 ns, an adjustable amplitude of 0-5 kV, and a maximum repetition frequency of 20 kHz. In this context, the operating characteristics of the circuit are derived based on the lossless transmission line model and Laplace transform, and then the correctness of the theoretical derivation is verified by the prototype. The results showed that the proposed ns power supply can drive DBD loads with adjustable output voltage amplitude and frequency.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3274451</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitudes ; Bipolar nanosecond pulse ; blumlein transmission lines ; Circuits ; Dielectric barrier discharge ; Discharges (electric) ; Electrical loads ; High-voltage techniques ; Laplace transforms ; Nanosecond pulses ; Power supplies ; Power supply ; Power transmission lines ; Pulse duration ; pulse transformer ; Pulse transformers ; pulsed power technology ; Resistors ; solid-state switches ; Topology ; Transformers ; Transmission lines ; Voltage ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-978cf4170a971f717592da343f77a8435986cdd8c6c2b7798c16a146d74290be3</citedby><cites>FETCH-LOGICAL-c294t-978cf4170a971f717592da343f77a8435986cdd8c6c2b7798c16a146d74290be3</cites><orcidid>0000-0003-1516-1088 ; 0000-0002-4089-4470 ; 0000-0002-1781-2756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10122155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gui, Hao</creatorcontrib><creatorcontrib>Zhao, Zhongyong</creatorcontrib><creatorcontrib>Shi, Qing</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Yao, Chenguo</creatorcontrib><title>All-Solid-State Nanosecond Pulse Power Supply Based on BLTs and Pulse Transformer for DBD Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Nanosecond(ns) pulses have been proven to drive DBD more efficiently. However, since the DBD device is a capacitive load, which will cause distortions in the pulse waveform of the power supply. To maintain the ns pulse waveform, a parallel resistor is normally set to overcome the influence of DBD loads in the traditional methods, which will cause extra energy loss. This paper proposed a bipolar ns pulse power supply for DBD based on Blumlein transmission lines (BLTs) and pulse transformer. It does not need to set a parallel resistor and can adapt well to the load characteristics of DBD. This topology can output bipolar ns pulses on DBD loads with a rise time of 100 ns, a pulse width of 300 ns, an adjustable amplitude of 0-5 kV, and a maximum repetition frequency of 20 kHz. In this context, the operating characteristics of the circuit are derived based on the lossless transmission line model and Laplace transform, and then the correctness of the theoretical derivation is verified by the prototype. The results showed that the proposed ns power supply can drive DBD loads with adjustable output voltage amplitude and frequency.</description><subject>Amplitudes</subject><subject>Bipolar nanosecond pulse</subject><subject>blumlein transmission lines</subject><subject>Circuits</subject><subject>Dielectric barrier discharge</subject><subject>Discharges (electric)</subject><subject>Electrical loads</subject><subject>High-voltage techniques</subject><subject>Laplace transforms</subject><subject>Nanosecond pulses</subject><subject>Power supplies</subject><subject>Power supply</subject><subject>Power transmission lines</subject><subject>Pulse duration</subject><subject>pulse transformer</subject><subject>Pulse transformers</subject><subject>pulsed power technology</subject><subject>Resistors</subject><subject>solid-state switches</subject><subject>Topology</subject><subject>Transformers</subject><subject>Transmission lines</subject><subject>Voltage</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUR4MoOKcfQPAh4HNnbpo2yeM25x8oOlh9DlmaQkfX1KRF9u3N2BCffi_n3AsHoXsgMwAin8r1qphRQtNZSjljGVygCUgGCQHCL9GECJElQsr0Gt2EsCMEWEZgguy8bZONa5sq2Qx6sPhDdy5Y47oKr8c2WLx2P9bjzdj37QEvdLAVdh1eFGXA-g8qve5C7fw-onHw8-IZz6PRGD00rrtFV7WO3N15p-jrZVUu35Li8_V9OS8SQyUbEsmFqRlwoiWHmgPPJK10ytKacy1YmkmRm6oSJjd0y7kUBnINLK84o5JsbTpFj6e7vXffow2D2rnRd_GlooKK2IPmeaTgRBnvQvC2Vr1v9tofFBB1rKmONdWxpjrXjM7DyWmstf94oBSyLP0FI-lvJA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gui, Hao</creator><creator>Zhao, Zhongyong</creator><creator>Shi, Qing</creator><creator>Liu, Xin</creator><creator>Yao, Chenguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1516-1088</orcidid><orcidid>https://orcid.org/0000-0002-4089-4470</orcidid><orcidid>https://orcid.org/0000-0002-1781-2756</orcidid></search><sort><creationdate>20230801</creationdate><title>All-Solid-State Nanosecond Pulse Power Supply Based on BLTs and Pulse Transformer for DBD Application</title><author>Gui, Hao ; Zhao, Zhongyong ; Shi, Qing ; Liu, Xin ; Yao, Chenguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-978cf4170a971f717592da343f77a8435986cdd8c6c2b7798c16a146d74290be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitudes</topic><topic>Bipolar nanosecond pulse</topic><topic>blumlein transmission lines</topic><topic>Circuits</topic><topic>Dielectric barrier discharge</topic><topic>Discharges (electric)</topic><topic>Electrical loads</topic><topic>High-voltage techniques</topic><topic>Laplace transforms</topic><topic>Nanosecond pulses</topic><topic>Power supplies</topic><topic>Power supply</topic><topic>Power transmission lines</topic><topic>Pulse duration</topic><topic>pulse transformer</topic><topic>Pulse transformers</topic><topic>pulsed power technology</topic><topic>Resistors</topic><topic>solid-state switches</topic><topic>Topology</topic><topic>Transformers</topic><topic>Transmission lines</topic><topic>Voltage</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Hao</creatorcontrib><creatorcontrib>Zhao, Zhongyong</creatorcontrib><creatorcontrib>Shi, Qing</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Yao, Chenguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gui, Hao</au><au>Zhao, Zhongyong</au><au>Shi, Qing</au><au>Liu, Xin</au><au>Yao, Chenguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Solid-State Nanosecond Pulse Power Supply Based on BLTs and Pulse Transformer for DBD Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>38</volume><issue>8</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Nanosecond(ns) pulses have been proven to drive DBD more efficiently. However, since the DBD device is a capacitive load, which will cause distortions in the pulse waveform of the power supply. To maintain the ns pulse waveform, a parallel resistor is normally set to overcome the influence of DBD loads in the traditional methods, which will cause extra energy loss. This paper proposed a bipolar ns pulse power supply for DBD based on Blumlein transmission lines (BLTs) and pulse transformer. It does not need to set a parallel resistor and can adapt well to the load characteristics of DBD. This topology can output bipolar ns pulses on DBD loads with a rise time of 100 ns, a pulse width of 300 ns, an adjustable amplitude of 0-5 kV, and a maximum repetition frequency of 20 kHz. In this context, the operating characteristics of the circuit are derived based on the lossless transmission line model and Laplace transform, and then the correctness of the theoretical derivation is verified by the prototype. The results showed that the proposed ns power supply can drive DBD loads with adjustable output voltage amplitude and frequency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3274451</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1516-1088</orcidid><orcidid>https://orcid.org/0000-0002-4089-4470</orcidid><orcidid>https://orcid.org/0000-0002-1781-2756</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-9 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_10122155 |
source | IEEE Electronic Library (IEL) |
subjects | Amplitudes Bipolar nanosecond pulse blumlein transmission lines Circuits Dielectric barrier discharge Discharges (electric) Electrical loads High-voltage techniques Laplace transforms Nanosecond pulses Power supplies Power supply Power transmission lines Pulse duration pulse transformer Pulse transformers pulsed power technology Resistors solid-state switches Topology Transformers Transmission lines Voltage Waveforms |
title | All-Solid-State Nanosecond Pulse Power Supply Based on BLTs and Pulse Transformer for DBD Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Solid-State%20Nanosecond%20Pulse%20Power%20Supply%20Based%20on%20BLTs%20and%20Pulse%20Transformer%20for%20DBD%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Gui,%20Hao&rft.date=2023-08-01&rft.volume=38&rft.issue=8&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3274451&rft_dat=%3Cproquest_RIE%3E2828941266%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828941266&rft_id=info:pmid/&rft_ieee_id=10122155&rfr_iscdi=true |