Switching Strategy for Connected Vehicles Under Variant Harsh Weather Conditions

With the development of 5G networks and advanced communication technologies, connected vehicles (CV) are becoming an increasingly important aspect of the future of transportation. The connected vehicles will usually generate a large amount of data that require fast and reliable communication channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of radio frequency identification (Online) 2023-01, Vol.7, p.1-1
Hauptverfasser: Liu, Jian, Nazeri, Amirhossein, Zhao, Chunheng, Abuhdima, Esmail, Comert, Gurcan, Huang, Chin-Tser, Pisu, Pierluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE journal of radio frequency identification (Online)
container_volume 7
creator Liu, Jian
Nazeri, Amirhossein
Zhao, Chunheng
Abuhdima, Esmail
Comert, Gurcan
Huang, Chin-Tser
Pisu, Pierluigi
description With the development of 5G networks and advanced communication technologies, connected vehicles (CV) are becoming an increasingly important aspect of the future of transportation. The connected vehicles will usually generate a large amount of data that require fast and reliable communication channels with low latency. 5G millimeter-wave (mmWave) is crucial for the next generation of vehicle-to-vehicle (V2V) communications in CV scenarios. However, harsh weather conditions such as rain, snow, dust, and sand can significantly impact the performance of 5G mmWave channels for V2V communications. Maintaining seamless connections for connected vehicles during harsh weather conditions is a significant challenge that researchers must address. In this paper, we propose a two-stage strategy enabling connected vehicles to operate effectively under moderate and severe weather conditions. Our proposed approach involves a prediction step, which uses machine learning techniques to forecast weather patterns and determine the optimal communication strategy, followed by a switching step, which seamlessly chooses between frequency or channel switch based on the prediction. By incorporating these two steps, we aim to provide a robust and efficient communication system that can adapt to different weather conditions. The NS3 simulation results show that our switching strategy is effective and can benefit the field of connected vehicle technology.
doi_str_mv 10.1109/JRFID.2023.3274602
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10121804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121804</ieee_id><sourcerecordid>2840392127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-120811cae4bc16641d86654d8aeebe80993a7c9b82220a20e1ef5436497cf7593</originalsourceid><addsrcrecordid>eNpNkE1PAjEQQDdGEwnyB4yHJp7BdtrdbY8GRTAkGhH01pTuLFuCu9iWGP69fMV4mjm8N5O8JLlmtMcYVXfPb4PRQw8o8B6HXGQUzpIWiEx1c1Cf53-7ZJdJJ4QlpRRUyniatpLXyY-LtnL1gkyiNxEXW1I2nvSbukYbsSAzrJxdYSDTukBPZsY7U0cyND5U5ANNrPCAFy66pg5XyUVpVgE7p9lOpoPH9_6wO355GvXvx10LIo9dBlQyZg2KuWVZJlghsywVhTSIc5RUKW5yq-YSAKgBigzLVPBMqNyWeap4O7k93l375nuDIepls_H17qUGKShXwCDfUXCkrG9C8FjqtXdfxm81o3ofTx_i6X08fYq3k26OkkPEfwIDJqngvyUhakk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840392127</pqid></control><display><type>article</type><title>Switching Strategy for Connected Vehicles Under Variant Harsh Weather Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jian ; Nazeri, Amirhossein ; Zhao, Chunheng ; Abuhdima, Esmail ; Comert, Gurcan ; Huang, Chin-Tser ; Pisu, Pierluigi</creator><creatorcontrib>Liu, Jian ; Nazeri, Amirhossein ; Zhao, Chunheng ; Abuhdima, Esmail ; Comert, Gurcan ; Huang, Chin-Tser ; Pisu, Pierluigi</creatorcontrib><description>With the development of 5G networks and advanced communication technologies, connected vehicles (CV) are becoming an increasingly important aspect of the future of transportation. The connected vehicles will usually generate a large amount of data that require fast and reliable communication channels with low latency. 5G millimeter-wave (mmWave) is crucial for the next generation of vehicle-to-vehicle (V2V) communications in CV scenarios. However, harsh weather conditions such as rain, snow, dust, and sand can significantly impact the performance of 5G mmWave channels for V2V communications. Maintaining seamless connections for connected vehicles during harsh weather conditions is a significant challenge that researchers must address. In this paper, we propose a two-stage strategy enabling connected vehicles to operate effectively under moderate and severe weather conditions. Our proposed approach involves a prediction step, which uses machine learning techniques to forecast weather patterns and determine the optimal communication strategy, followed by a switching step, which seamlessly chooses between frequency or channel switch based on the prediction. By incorporating these two steps, we aim to provide a robust and efficient communication system that can adapt to different weather conditions. The NS3 simulation results show that our switching strategy is effective and can benefit the field of connected vehicle technology.</description><identifier>ISSN: 2469-7281</identifier><identifier>EISSN: 2469-729X</identifier><identifier>DOI: 10.1109/JRFID.2023.3274602</identifier><identifier>CODEN: IJRFAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Channels ; Communication ; Communications systems ; Connected vehicles ; harsh weather ; Machine learning ; Meteorology ; Millimeter wave communication ; Millimeter waves ; NS3 ; Reliability ; Switches ; Switching ; switching strategy ; Throughput ; Vehicles ; Weather ; Weather forecasting</subject><ispartof>IEEE journal of radio frequency identification (Online), 2023-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-120811cae4bc16641d86654d8aeebe80993a7c9b82220a20e1ef5436497cf7593</cites><orcidid>0000-0002-2373-5013 ; 0000-0001-8368-6228 ; 0000-0003-3983-972X ; 0000-0002-7396-2572 ; 0000-0003-1121-6467 ; 0000-0002-3121-4779 ; 0000-0003-4266-1336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10121804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Nazeri, Amirhossein</creatorcontrib><creatorcontrib>Zhao, Chunheng</creatorcontrib><creatorcontrib>Abuhdima, Esmail</creatorcontrib><creatorcontrib>Comert, Gurcan</creatorcontrib><creatorcontrib>Huang, Chin-Tser</creatorcontrib><creatorcontrib>Pisu, Pierluigi</creatorcontrib><title>Switching Strategy for Connected Vehicles Under Variant Harsh Weather Conditions</title><title>IEEE journal of radio frequency identification (Online)</title><addtitle>JRFID</addtitle><description>With the development of 5G networks and advanced communication technologies, connected vehicles (CV) are becoming an increasingly important aspect of the future of transportation. The connected vehicles will usually generate a large amount of data that require fast and reliable communication channels with low latency. 5G millimeter-wave (mmWave) is crucial for the next generation of vehicle-to-vehicle (V2V) communications in CV scenarios. However, harsh weather conditions such as rain, snow, dust, and sand can significantly impact the performance of 5G mmWave channels for V2V communications. Maintaining seamless connections for connected vehicles during harsh weather conditions is a significant challenge that researchers must address. In this paper, we propose a two-stage strategy enabling connected vehicles to operate effectively under moderate and severe weather conditions. Our proposed approach involves a prediction step, which uses machine learning techniques to forecast weather patterns and determine the optimal communication strategy, followed by a switching step, which seamlessly chooses between frequency or channel switch based on the prediction. By incorporating these two steps, we aim to provide a robust and efficient communication system that can adapt to different weather conditions. The NS3 simulation results show that our switching strategy is effective and can benefit the field of connected vehicle technology.</description><subject>5G mobile communication</subject><subject>Channels</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Connected vehicles</subject><subject>harsh weather</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>NS3</subject><subject>Reliability</subject><subject>Switches</subject><subject>Switching</subject><subject>switching strategy</subject><subject>Throughput</subject><subject>Vehicles</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>2469-7281</issn><issn>2469-729X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQQDdGEwnyB4yHJp7BdtrdbY8GRTAkGhH01pTuLFuCu9iWGP69fMV4mjm8N5O8JLlmtMcYVXfPb4PRQw8o8B6HXGQUzpIWiEx1c1Cf53-7ZJdJJ4QlpRRUyniatpLXyY-LtnL1gkyiNxEXW1I2nvSbukYbsSAzrJxdYSDTukBPZsY7U0cyND5U5ANNrPCAFy66pg5XyUVpVgE7p9lOpoPH9_6wO355GvXvx10LIo9dBlQyZg2KuWVZJlghsywVhTSIc5RUKW5yq-YSAKgBigzLVPBMqNyWeap4O7k93l375nuDIepls_H17qUGKShXwCDfUXCkrG9C8FjqtXdfxm81o3ofTx_i6X08fYq3k26OkkPEfwIDJqngvyUhakk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Jian</creator><creator>Nazeri, Amirhossein</creator><creator>Zhao, Chunheng</creator><creator>Abuhdima, Esmail</creator><creator>Comert, Gurcan</creator><creator>Huang, Chin-Tser</creator><creator>Pisu, Pierluigi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2373-5013</orcidid><orcidid>https://orcid.org/0000-0001-8368-6228</orcidid><orcidid>https://orcid.org/0000-0003-3983-972X</orcidid><orcidid>https://orcid.org/0000-0002-7396-2572</orcidid><orcidid>https://orcid.org/0000-0003-1121-6467</orcidid><orcidid>https://orcid.org/0000-0002-3121-4779</orcidid><orcidid>https://orcid.org/0000-0003-4266-1336</orcidid></search><sort><creationdate>20230101</creationdate><title>Switching Strategy for Connected Vehicles Under Variant Harsh Weather Conditions</title><author>Liu, Jian ; Nazeri, Amirhossein ; Zhao, Chunheng ; Abuhdima, Esmail ; Comert, Gurcan ; Huang, Chin-Tser ; Pisu, Pierluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-120811cae4bc16641d86654d8aeebe80993a7c9b82220a20e1ef5436497cf7593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Channels</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Connected vehicles</topic><topic>harsh weather</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>NS3</topic><topic>Reliability</topic><topic>Switches</topic><topic>Switching</topic><topic>switching strategy</topic><topic>Throughput</topic><topic>Vehicles</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Nazeri, Amirhossein</creatorcontrib><creatorcontrib>Zhao, Chunheng</creatorcontrib><creatorcontrib>Abuhdima, Esmail</creatorcontrib><creatorcontrib>Comert, Gurcan</creatorcontrib><creatorcontrib>Huang, Chin-Tser</creatorcontrib><creatorcontrib>Pisu, Pierluigi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of radio frequency identification (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jian</au><au>Nazeri, Amirhossein</au><au>Zhao, Chunheng</au><au>Abuhdima, Esmail</au><au>Comert, Gurcan</au><au>Huang, Chin-Tser</au><au>Pisu, Pierluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switching Strategy for Connected Vehicles Under Variant Harsh Weather Conditions</atitle><jtitle>IEEE journal of radio frequency identification (Online)</jtitle><stitle>JRFID</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2469-7281</issn><eissn>2469-729X</eissn><coden>IJRFAF</coden><abstract>With the development of 5G networks and advanced communication technologies, connected vehicles (CV) are becoming an increasingly important aspect of the future of transportation. The connected vehicles will usually generate a large amount of data that require fast and reliable communication channels with low latency. 5G millimeter-wave (mmWave) is crucial for the next generation of vehicle-to-vehicle (V2V) communications in CV scenarios. However, harsh weather conditions such as rain, snow, dust, and sand can significantly impact the performance of 5G mmWave channels for V2V communications. Maintaining seamless connections for connected vehicles during harsh weather conditions is a significant challenge that researchers must address. In this paper, we propose a two-stage strategy enabling connected vehicles to operate effectively under moderate and severe weather conditions. Our proposed approach involves a prediction step, which uses machine learning techniques to forecast weather patterns and determine the optimal communication strategy, followed by a switching step, which seamlessly chooses between frequency or channel switch based on the prediction. By incorporating these two steps, we aim to provide a robust and efficient communication system that can adapt to different weather conditions. The NS3 simulation results show that our switching strategy is effective and can benefit the field of connected vehicle technology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JRFID.2023.3274602</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2373-5013</orcidid><orcidid>https://orcid.org/0000-0001-8368-6228</orcidid><orcidid>https://orcid.org/0000-0003-3983-972X</orcidid><orcidid>https://orcid.org/0000-0002-7396-2572</orcidid><orcidid>https://orcid.org/0000-0003-1121-6467</orcidid><orcidid>https://orcid.org/0000-0002-3121-4779</orcidid><orcidid>https://orcid.org/0000-0003-4266-1336</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2469-7281
ispartof IEEE journal of radio frequency identification (Online), 2023-01, Vol.7, p.1-1
issn 2469-7281
2469-729X
language eng
recordid cdi_ieee_primary_10121804
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Channels
Communication
Communications systems
Connected vehicles
harsh weather
Machine learning
Meteorology
Millimeter wave communication
Millimeter waves
NS3
Reliability
Switches
Switching
switching strategy
Throughput
Vehicles
Weather
Weather forecasting
title Switching Strategy for Connected Vehicles Under Variant Harsh Weather Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switching%20Strategy%20for%20Connected%20Vehicles%20Under%20Variant%20Harsh%20Weather%20Conditions&rft.jtitle=IEEE%20journal%20of%20radio%20frequency%20identification%20(Online)&rft.au=Liu,%20Jian&rft.date=2023-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2469-7281&rft.eissn=2469-729X&rft.coden=IJRFAF&rft_id=info:doi/10.1109/JRFID.2023.3274602&rft_dat=%3Cproquest_RIE%3E2840392127%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840392127&rft_id=info:pmid/&rft_ieee_id=10121804&rfr_iscdi=true