Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping
In this paper, we propose an efficient Knowledge based Automatic Model Generation (KAMG) technique, aimed at generating microwave neural models of highest possible accuracy using fewest accurate data. The technique is comprehensively derived to integrate three distinct powerful concepts, namely, aut...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 vol.2 |
---|---|
container_issue | |
container_start_page | 1097 |
container_title | |
container_volume | 2 |
creator | Devabhaktuni, V. Chattaraj, B. Yagoub, M.C.E. Zhang, Q.J. |
description | In this paper, we propose an efficient Knowledge based Automatic Model Generation (KAMG) technique, aimed at generating microwave neural models of highest possible accuracy using fewest accurate data. The technique is comprehensively derived to integrate three distinct powerful concepts, namely, automatic model generation, knowledge neural networks and space mapping. We utilize two types of data generators - fine data generators that are accurate and slow (e.g., CPU-intensive 3D-EM simulators); coarse data generators that are approximate and fast (e.g., inexpensive 2D-EM). Motivated by the space-mapping concept, the KAMG utilizes extensive approximate data but fewest accurate data to generate neural models that accurately match fine data. Our formulation exploits a variety of knowledge network architectures to facilitate reinforced neural network learning from both coarse and fine data. During neural model generation by KAMG both coarse and fine data generators are automatically driven using adaptive sampling. The proposed technique is demonstrated through examples of MOSFET, and embedded passives used in multi-layer PCBs. |
doi_str_mv | 10.1109/MWSYM.2002.1011836 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_1011836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1011836</ieee_id><sourcerecordid>27122548</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-7104c8da795229bf037b5989f95e64e8848f16af0ab500a5399e119cc480f5623</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0eElXpD8DGK1ak2I6d2Muq4iW1YgEIWEWuM6lMEzs4SVv-HldlNNLVjO4c6Q5CV5RMKSXqbvnx-rWcMkLYlBJKZZqdoBETeZbkjGanaKJySWKnOUuVOkMjQrlKMi4-L9Ck675JLC6IIukI7WflVjsDJW6sCX6nt4AbX0Jt3RpXQTew82GDYd_W3vaHpR563-jemqMPr8FBiLN3t3jj_K6Gcg3YwRB0HaU_3HdYuxJ3rTaRrts2ci7ReaXrDib_OkbvD_dv86dk8fL4PJ8tEssI75OcEm5kqXMlGFOrKoZaCSVVpQRkHKTksqKZroheCUK0iIGBUmUMl6QSGUvH6ObIbYP_GaDri8Z2BupaO_BDV7CcMia4jMbro9ECQNEG2-jwW_w_OP0D9WtvHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27122548</pqid></control><display><type>conference_proceeding</type><title>Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Devabhaktuni, V. ; Chattaraj, B. ; Yagoub, M.C.E. ; Zhang, Q.J.</creator><creatorcontrib>Devabhaktuni, V. ; Chattaraj, B. ; Yagoub, M.C.E. ; Zhang, Q.J.</creatorcontrib><description>In this paper, we propose an efficient Knowledge based Automatic Model Generation (KAMG) technique, aimed at generating microwave neural models of highest possible accuracy using fewest accurate data. The technique is comprehensively derived to integrate three distinct powerful concepts, namely, automatic model generation, knowledge neural networks and space mapping. We utilize two types of data generators - fine data generators that are accurate and slow (e.g., CPU-intensive 3D-EM simulators); coarse data generators that are approximate and fast (e.g., inexpensive 2D-EM). Motivated by the space-mapping concept, the KAMG utilizes extensive approximate data but fewest accurate data to generate neural models that accurately match fine data. Our formulation exploits a variety of knowledge network architectures to facilitate reinforced neural network learning from both coarse and fine data. During neural model generation by KAMG both coarse and fine data generators are automatically driven using adaptive sampling. The proposed technique is demonstrated through examples of MOSFET, and embedded passives used in multi-layer PCBs.</description><identifier>ISSN: 0149-645X</identifier><identifier>ISBN: 9780780372399</identifier><identifier>ISBN: 0780372395</identifier><identifier>EISSN: 2576-7216</identifier><identifier>DOI: 10.1109/MWSYM.2002.1011836</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Design automation ; High power microwave generation ; Microwave devices ; Microwave generation ; Microwave theory and techniques ; Neural networks ; Sampling methods ; Space technology ; Training data</subject><ispartof>2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), 2002, Vol.2, p.1097-1100 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1011836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1011836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Devabhaktuni, V.</creatorcontrib><creatorcontrib>Chattaraj, B.</creatorcontrib><creatorcontrib>Yagoub, M.C.E.</creatorcontrib><creatorcontrib>Zhang, Q.J.</creatorcontrib><title>Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping</title><title>2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278)</title><addtitle>MWSYM</addtitle><description>In this paper, we propose an efficient Knowledge based Automatic Model Generation (KAMG) technique, aimed at generating microwave neural models of highest possible accuracy using fewest accurate data. The technique is comprehensively derived to integrate three distinct powerful concepts, namely, automatic model generation, knowledge neural networks and space mapping. We utilize two types of data generators - fine data generators that are accurate and slow (e.g., CPU-intensive 3D-EM simulators); coarse data generators that are approximate and fast (e.g., inexpensive 2D-EM). Motivated by the space-mapping concept, the KAMG utilizes extensive approximate data but fewest accurate data to generate neural models that accurately match fine data. Our formulation exploits a variety of knowledge network architectures to facilitate reinforced neural network learning from both coarse and fine data. During neural model generation by KAMG both coarse and fine data generators are automatically driven using adaptive sampling. The proposed technique is demonstrated through examples of MOSFET, and embedded passives used in multi-layer PCBs.</description><subject>Capacitors</subject><subject>Design automation</subject><subject>High power microwave generation</subject><subject>Microwave devices</subject><subject>Microwave generation</subject><subject>Microwave theory and techniques</subject><subject>Neural networks</subject><subject>Sampling methods</subject><subject>Space technology</subject><subject>Training data</subject><issn>0149-645X</issn><issn>2576-7216</issn><isbn>9780780372399</isbn><isbn>0780372395</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAQRS0eElXpD8DGK1ak2I6d2Muq4iW1YgEIWEWuM6lMEzs4SVv-HldlNNLVjO4c6Q5CV5RMKSXqbvnx-rWcMkLYlBJKZZqdoBETeZbkjGanaKJySWKnOUuVOkMjQrlKMi4-L9Ck675JLC6IIukI7WflVjsDJW6sCX6nt4AbX0Jt3RpXQTew82GDYd_W3vaHpR563-jemqMPr8FBiLN3t3jj_K6Gcg3YwRB0HaU_3HdYuxJ3rTaRrts2ci7ReaXrDib_OkbvD_dv86dk8fL4PJ8tEssI75OcEm5kqXMlGFOrKoZaCSVVpQRkHKTksqKZroheCUK0iIGBUmUMl6QSGUvH6ObIbYP_GaDri8Z2BupaO_BDV7CcMia4jMbro9ECQNEG2-jwW_w_OP0D9WtvHg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Devabhaktuni, V.</creator><creator>Chattaraj, B.</creator><creator>Yagoub, M.C.E.</creator><creator>Zhang, Q.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2002</creationdate><title>Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping</title><author>Devabhaktuni, V. ; Chattaraj, B. ; Yagoub, M.C.E. ; Zhang, Q.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-7104c8da795229bf037b5989f95e64e8848f16af0ab500a5399e119cc480f5623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Capacitors</topic><topic>Design automation</topic><topic>High power microwave generation</topic><topic>Microwave devices</topic><topic>Microwave generation</topic><topic>Microwave theory and techniques</topic><topic>Neural networks</topic><topic>Sampling methods</topic><topic>Space technology</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Devabhaktuni, V.</creatorcontrib><creatorcontrib>Chattaraj, B.</creatorcontrib><creatorcontrib>Yagoub, M.C.E.</creatorcontrib><creatorcontrib>Zhang, Q.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Devabhaktuni, V.</au><au>Chattaraj, B.</au><au>Yagoub, M.C.E.</au><au>Zhang, Q.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping</atitle><btitle>2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278)</btitle><stitle>MWSYM</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>1097</spage><epage>1100 vol.2</epage><pages>1097-1100 vol.2</pages><issn>0149-645X</issn><eissn>2576-7216</eissn><isbn>9780780372399</isbn><isbn>0780372395</isbn><abstract>In this paper, we propose an efficient Knowledge based Automatic Model Generation (KAMG) technique, aimed at generating microwave neural models of highest possible accuracy using fewest accurate data. The technique is comprehensively derived to integrate three distinct powerful concepts, namely, automatic model generation, knowledge neural networks and space mapping. We utilize two types of data generators - fine data generators that are accurate and slow (e.g., CPU-intensive 3D-EM simulators); coarse data generators that are approximate and fast (e.g., inexpensive 2D-EM). Motivated by the space-mapping concept, the KAMG utilizes extensive approximate data but fewest accurate data to generate neural models that accurately match fine data. Our formulation exploits a variety of knowledge network architectures to facilitate reinforced neural network learning from both coarse and fine data. During neural model generation by KAMG both coarse and fine data generators are automatically driven using adaptive sampling. The proposed technique is demonstrated through examples of MOSFET, and embedded passives used in multi-layer PCBs.</abstract><pub>IEEE</pub><doi>10.1109/MWSYM.2002.1011836</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0149-645X |
ispartof | 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), 2002, Vol.2, p.1097-1100 vol.2 |
issn | 0149-645X 2576-7216 |
language | eng |
recordid | cdi_ieee_primary_1011836 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Capacitors Design automation High power microwave generation Microwave devices Microwave generation Microwave theory and techniques Neural networks Sampling methods Space technology Training data |
title | Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advanced%20microwave%20modeling%20framework%20exploiting%20automatic%20model%20generation,%20knowledge%20neural%20networks%20and%20space%20mapping&rft.btitle=2002%20IEEE%20MTT-S%20International%20Microwave%20Symposium%20Digest%20(Cat.%20No.02CH37278)&rft.au=Devabhaktuni,%20V.&rft.date=2002&rft.volume=2&rft.spage=1097&rft.epage=1100%20vol.2&rft.pages=1097-1100%20vol.2&rft.issn=0149-645X&rft.eissn=2576-7216&rft.isbn=9780780372399&rft.isbn_list=0780372395&rft_id=info:doi/10.1109/MWSYM.2002.1011836&rft_dat=%3Cproquest_6IE%3E27122548%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27122548&rft_id=info:pmid/&rft_ieee_id=1011836&rfr_iscdi=true |