Loss Tangent Estimation From GPR Data in Complex Medium Scenarios Using Amplitude and Power Spectrum Centroid Frequency Shift Methods

Electromagnetic (EM) losses estimation in complex scenarios lacking subsurface continuous reflectors is challenging. We present here a robust approach based on the centroid frequency shift method and Ricker wavelet as the input signal, to compute intrinsic (absorption) losses. The centroid-frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-8
Hauptverfasser: Baniamerian, Jamaledin, Lauro, Sebastian Emanuel, Cosciotti, Barbara, Mattei, Elisabetta, Pettinelli, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electromagnetic (EM) losses estimation in complex scenarios lacking subsurface continuous reflectors is challenging. We present here a robust approach based on the centroid frequency shift method and Ricker wavelet as the input signal, to compute intrinsic (absorption) losses. The centroid-frequency shift is calculated using the amplitude and power spectrum of records, leading to equations that relate the centroid frequency variation in time to the loss tangent (intrinsic losses). First, the approaches are evaluated and compared by implementation to synthetic ground penetrating radar (GPR) data generated with the gprMax simulator, starting from an inhomogeneous material with spatially smooth dielectric variations. Then, they are applied to real GPR data collected on a fractured basaltic lava flow. The retrieved loss tangent values are compared to the total attenuation estimated from the signal amplitude decay, to evaluate the contribution due to scattering phenomena. The proposed analysis is particularly suitable for GPR data collected in planetary environments, since dielectric losses could be used to constrain the oxide composition of the material as well as scattering losses to determine the amount and distribution of subsurface inhomogeneities.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3272795