Optimal Resource Management for Hierarchical Federated Learning over HetNets with Wireless Energy Transfer

Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-10, Vol.10 (19), p.1-1
Hauptverfasser: Hamdi, Rami, Said, Ahmed Ben, Baccour, Emna, Erbad, Aiman, Mohamed, Amr, Hamdi, Mounir, Guizani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 19
container_start_page 1
container_title IEEE internet of things journal
container_volume 10
creator Hamdi, Rami
Said, Ahmed Ben
Baccour, Emna
Erbad, Aiman
Mohamed, Amr
Hamdi, Mounir
Guizani, Mohsen
description Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.
doi_str_mv 10.1109/JIOT.2023.3271692
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10113166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113166</ieee_id><sourcerecordid>2867392747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-61b55989044e83cc9ff4602fbb967f0faa144b741b0026937a044d8f3cee8c3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWL9AYUeAj2vzZfZzbGIVout0Ao9hmycaER3bRJb_PeN6KGnmYHnnWEehO4p6VNK1NPrdL7oM8J4n7OSSsWuUIflthBSsut__S3qxbghhOTYgCrZQZv5Pvmd2eIPiO0hWMBvpjEr2EGTsGsDnngIJti1txkawzJPCZZ4BiY0vlnh9gcyBOkdUsS_Pq3xlw-whRjxqIGwOuJFME10EO7QjTPbCL1L7aLP8WgxnBSz-ct0-DwrLCMqFZLWg4GqFBECKm6tck5IwlxdK1k64oyhQtSloDUhTCpemkwuK8ctQGV5Fz2et-5D-32AmPQm_9Xkg5pVsuSKlaLMFD1TNrQxBnB6H7KGcNSU6JNTfXKqT071xWnOPJwzHgD-8ZRyKiX_A9Ohczo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867392747</pqid></control><display><type>article</type><title>Optimal Resource Management for Hierarchical Federated Learning over HetNets with Wireless Energy Transfer</title><source>IEEE Electronic Library (IEL)</source><creator>Hamdi, Rami ; Said, Ahmed Ben ; Baccour, Emna ; Erbad, Aiman ; Mohamed, Amr ; Hamdi, Mounir ; Guizani, Mohsen</creator><creatorcontrib>Hamdi, Rami ; Said, Ahmed Ben ; Baccour, Emna ; Erbad, Aiman ; Mohamed, Amr ; Hamdi, Mounir ; Guizani, Mohsen</creatorcontrib><description>Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3271692</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complexity ; Convergence ; Deep learning ; device association ; Edge computing ; Energy consumption ; Energy costs ; energy efficiency ; Energy transfer ; Environmental monitoring ; Federated learning ; HetNets ; Hierarchical federated learning ; Industrial applications ; Internet of Things ; Mixed integer ; Mobile computing ; Nonlinear programming ; Occupational health ; Occupational safety ; Optimization ; Performance evaluation ; Remote monitoring ; Resource management ; Task analysis ; Training ; wireless energy transfer ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2023-10, Vol.10 (19), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c209t-61b55989044e83cc9ff4602fbb967f0faa144b741b0026937a044d8f3cee8c3</citedby><cites>FETCH-LOGICAL-c209t-61b55989044e83cc9ff4602fbb967f0faa144b741b0026937a044d8f3cee8c3</cites><orcidid>0000-0001-7565-5253 ; 0000-0001-8218-8745 ; 0000-0002-1583-7503 ; 0000-0001-5795-5148 ; 0000-0002-9766-0085 ; 0000-0002-7760-8132 ; 0000-0002-8972-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10113166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamdi, Rami</creatorcontrib><creatorcontrib>Said, Ahmed Ben</creatorcontrib><creatorcontrib>Baccour, Emna</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Mohamed, Amr</creatorcontrib><creatorcontrib>Hamdi, Mounir</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><title>Optimal Resource Management for Hierarchical Federated Learning over HetNets with Wireless Energy Transfer</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>device association</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>energy efficiency</subject><subject>Energy transfer</subject><subject>Environmental monitoring</subject><subject>Federated learning</subject><subject>HetNets</subject><subject>Hierarchical federated learning</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>Nonlinear programming</subject><subject>Occupational health</subject><subject>Occupational safety</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Remote monitoring</subject><subject>Resource management</subject><subject>Task analysis</subject><subject>Training</subject><subject>wireless energy transfer</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rAjEQhkNpoWL9AYUeAj2vzZfZzbGIVout0Ao9hmycaER3bRJb_PeN6KGnmYHnnWEehO4p6VNK1NPrdL7oM8J4n7OSSsWuUIflthBSsut__S3qxbghhOTYgCrZQZv5Pvmd2eIPiO0hWMBvpjEr2EGTsGsDnngIJti1txkawzJPCZZ4BiY0vlnh9gcyBOkdUsS_Pq3xlw-whRjxqIGwOuJFME10EO7QjTPbCL1L7aLP8WgxnBSz-ct0-DwrLCMqFZLWg4GqFBECKm6tck5IwlxdK1k64oyhQtSloDUhTCpemkwuK8ctQGV5Fz2et-5D-32AmPQm_9Xkg5pVsuSKlaLMFD1TNrQxBnB6H7KGcNSU6JNTfXKqT071xWnOPJwzHgD-8ZRyKiX_A9Ohczo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Hamdi, Rami</creator><creator>Said, Ahmed Ben</creator><creator>Baccour, Emna</creator><creator>Erbad, Aiman</creator><creator>Mohamed, Amr</creator><creator>Hamdi, Mounir</creator><creator>Guizani, Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-5253</orcidid><orcidid>https://orcid.org/0000-0001-8218-8745</orcidid><orcidid>https://orcid.org/0000-0002-1583-7503</orcidid><orcidid>https://orcid.org/0000-0001-5795-5148</orcidid><orcidid>https://orcid.org/0000-0002-9766-0085</orcidid><orcidid>https://orcid.org/0000-0002-7760-8132</orcidid><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid></search><sort><creationdate>20231001</creationdate><title>Optimal Resource Management for Hierarchical Federated Learning over HetNets with Wireless Energy Transfer</title><author>Hamdi, Rami ; Said, Ahmed Ben ; Baccour, Emna ; Erbad, Aiman ; Mohamed, Amr ; Hamdi, Mounir ; Guizani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-61b55989044e83cc9ff4602fbb967f0faa144b741b0026937a044d8f3cee8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>device association</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>energy efficiency</topic><topic>Energy transfer</topic><topic>Environmental monitoring</topic><topic>Federated learning</topic><topic>HetNets</topic><topic>Hierarchical federated learning</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>Nonlinear programming</topic><topic>Occupational health</topic><topic>Occupational safety</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Remote monitoring</topic><topic>Resource management</topic><topic>Task analysis</topic><topic>Training</topic><topic>wireless energy transfer</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamdi, Rami</creatorcontrib><creatorcontrib>Said, Ahmed Ben</creatorcontrib><creatorcontrib>Baccour, Emna</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Mohamed, Amr</creatorcontrib><creatorcontrib>Hamdi, Mounir</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamdi, Rami</au><au>Said, Ahmed Ben</au><au>Baccour, Emna</au><au>Erbad, Aiman</au><au>Mohamed, Amr</au><au>Hamdi, Mounir</au><au>Guizani, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Resource Management for Hierarchical Federated Learning over HetNets with Wireless Energy Transfer</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>10</volume><issue>19</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3271692</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7565-5253</orcidid><orcidid>https://orcid.org/0000-0001-8218-8745</orcidid><orcidid>https://orcid.org/0000-0002-1583-7503</orcidid><orcidid>https://orcid.org/0000-0001-5795-5148</orcidid><orcidid>https://orcid.org/0000-0002-9766-0085</orcidid><orcidid>https://orcid.org/0000-0002-7760-8132</orcidid><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-10, Vol.10 (19), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10113166
source IEEE Electronic Library (IEL)
subjects Algorithms
Complexity
Convergence
Deep learning
device association
Edge computing
Energy consumption
Energy costs
energy efficiency
Energy transfer
Environmental monitoring
Federated learning
HetNets
Hierarchical federated learning
Industrial applications
Internet of Things
Mixed integer
Mobile computing
Nonlinear programming
Occupational health
Occupational safety
Optimization
Performance evaluation
Remote monitoring
Resource management
Task analysis
Training
wireless energy transfer
Wireless networks
title Optimal Resource Management for Hierarchical Federated Learning over HetNets with Wireless Energy Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Resource%20Management%20for%20Hierarchical%20Federated%20Learning%20over%20HetNets%20with%20Wireless%20Energy%20Transfer&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Hamdi,%20Rami&rft.date=2023-10-01&rft.volume=10&rft.issue=19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3271692&rft_dat=%3Cproquest_RIE%3E2867392747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867392747&rft_id=info:pmid/&rft_ieee_id=10113166&rfr_iscdi=true