A Novel Cascadable TCAM Using RRAM and Current Race Scheme for High-Speed Energy-Efficient Applications

In this work, a novel ternary content addressable memory (TCAM) design is proposed using resistive random-access memory (RRAM) array in 2T2R configuration. The suggested memory array adopts the current-race (CR) sensing mechanism incorporated with a match-line (ML) booster in the sensing amplifier (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2023-01, Vol.22, p.1-8
Hauptverfasser: Pan, Kangqiang, Tosson, Amr M.S., Wang, Ningxuan, Zhou, Norman Y., Wei, Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on nanotechnology
container_volume 22
creator Pan, Kangqiang
Tosson, Amr M.S.
Wang, Ningxuan
Zhou, Norman Y.
Wei, Lan
description In this work, a novel ternary content addressable memory (TCAM) design is proposed using resistive random-access memory (RRAM) array in 2T2R configuration. The suggested memory array adopts the current-race (CR) sensing mechanism incorporated with a match-line (ML) booster in the sensing amplifier (SA) to improve energy efficiency, search speed and tolerance to RRAM switching variation. Several innovations are implemented to enhance the design further. For large TCAM arrays, match-line sensing amplifier (MLSA) direct cascading (DC) and an SR-latch cascading (SRC) schemes are proposed and compared in search speed, energy efficiency and MLSA noise margin. A same clock phase cascading (SCPC) scheme is also introduced to reduce latency in cascading structure by placing evaluation phase of all stages in the same clock phase. Furthermore, an RRAM-based tunable delay element (RRAM-TDE) is used in the TCAM design to provide flexibility and robustness against RRAM switching variation. The resulting system demonstrates excellent speed, energy and area efficiency against other TCAM designs using CMOS and emerging non-volatile memory (eNVM). To the best of our knowledge, the proposed 64-bit 1-stage TCAM system's speed and energy consumption match the best performance reported by other eNVM-based TCAM designs. The proposed design on a 128-bit 2-stage system also has speed and energy consumption comparable to SRAM-based TCAMs with the extra advantages of (a) compact size (90% reduction) and (b) non-volatility.
doi_str_mv 10.1109/TNANO.2023.3271308
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10111053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10111053</ieee_id><sourcerecordid>2809915727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-b9196b1f4a3367607ffa71456053b0ad389968b0ec4a9bdbcbedbdbe73e4a3763</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhYMoWKt_QFwMuE6dRzKTWYZQrVBb6APchcnkJp2SJnEmFfrvnVoXrs5ZnO9e-ILgkeAJIVi-bBbpYjmhmLIJo4IwnFwFIyIjEmKcxNe-x4yHhMaft8Gdc3uMieBxMgrqFC26b2hQppxWpSoaQJss_UBbZ9oarVa-qrZE2dFaaAe0UhrQWu_gAKjqLJqZeheue4ASTVuw9SmcVpXR5rxN-74xWg2ma919cFOpxsHDX46D7et0k83C-fLtPUvnoaaSD2EhieQFqSLFGBcci6pSgkQxxzErsCpZIiVPCgw6UrIoC11A6QMEA48IzsbB8-Vub7uvI7gh33dH2_qXOU2wlCQWVPgVvay07ZyzUOW9NQdlTznB-Vlo_is0PwvN_4R66OkCGQD4BxAPxIz9ALuAcQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809915727</pqid></control><display><type>article</type><title>A Novel Cascadable TCAM Using RRAM and Current Race Scheme for High-Speed Energy-Efficient Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Pan, Kangqiang ; Tosson, Amr M.S. ; Wang, Ningxuan ; Zhou, Norman Y. ; Wei, Lan</creator><creatorcontrib>Pan, Kangqiang ; Tosson, Amr M.S. ; Wang, Ningxuan ; Zhou, Norman Y. ; Wei, Lan</creatorcontrib><description>In this work, a novel ternary content addressable memory (TCAM) design is proposed using resistive random-access memory (RRAM) array in 2T2R configuration. The suggested memory array adopts the current-race (CR) sensing mechanism incorporated with a match-line (ML) booster in the sensing amplifier (SA) to improve energy efficiency, search speed and tolerance to RRAM switching variation. Several innovations are implemented to enhance the design further. For large TCAM arrays, match-line sensing amplifier (MLSA) direct cascading (DC) and an SR-latch cascading (SRC) schemes are proposed and compared in search speed, energy efficiency and MLSA noise margin. A same clock phase cascading (SCPC) scheme is also introduced to reduce latency in cascading structure by placing evaluation phase of all stages in the same clock phase. Furthermore, an RRAM-based tunable delay element (RRAM-TDE) is used in the TCAM design to provide flexibility and robustness against RRAM switching variation. The resulting system demonstrates excellent speed, energy and area efficiency against other TCAM designs using CMOS and emerging non-volatile memory (eNVM). To the best of our knowledge, the proposed 64-bit 1-stage TCAM system's speed and energy consumption match the best performance reported by other eNVM-based TCAM designs. The proposed design on a 128-bit 2-stage system also has speed and energy consumption comparable to SRAM-based TCAMs with the extra advantages of (a) compact size (90% reduction) and (b) non-volatility.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2023.3271308</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2T2R ; Amplifiers ; Arrays ; Associative memory ; Cascading ; Current race ; Delays ; Design improvements ; Energy consumption ; Energy efficiency ; Low-power memory design ; Neural Network Acceleration ; Random access memory ; Resistance ; RRAM ; Sensors ; Switches ; Switching ; Switching circuits ; TCAM ; Tunable delay element</subject><ispartof>IEEE transactions on nanotechnology, 2023-01, Vol.22, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-b9196b1f4a3367607ffa71456053b0ad389968b0ec4a9bdbcbedbdbe73e4a3763</citedby><cites>FETCH-LOGICAL-c296t-b9196b1f4a3367607ffa71456053b0ad389968b0ec4a9bdbcbedbdbe73e4a3763</cites><orcidid>0000-0002-4258-9971 ; 0000-0003-0903-914X ; 0000-0002-7430-8767 ; 0000-0003-2886-0259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10111053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10111053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pan, Kangqiang</creatorcontrib><creatorcontrib>Tosson, Amr M.S.</creatorcontrib><creatorcontrib>Wang, Ningxuan</creatorcontrib><creatorcontrib>Zhou, Norman Y.</creatorcontrib><creatorcontrib>Wei, Lan</creatorcontrib><title>A Novel Cascadable TCAM Using RRAM and Current Race Scheme for High-Speed Energy-Efficient Applications</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>In this work, a novel ternary content addressable memory (TCAM) design is proposed using resistive random-access memory (RRAM) array in 2T2R configuration. The suggested memory array adopts the current-race (CR) sensing mechanism incorporated with a match-line (ML) booster in the sensing amplifier (SA) to improve energy efficiency, search speed and tolerance to RRAM switching variation. Several innovations are implemented to enhance the design further. For large TCAM arrays, match-line sensing amplifier (MLSA) direct cascading (DC) and an SR-latch cascading (SRC) schemes are proposed and compared in search speed, energy efficiency and MLSA noise margin. A same clock phase cascading (SCPC) scheme is also introduced to reduce latency in cascading structure by placing evaluation phase of all stages in the same clock phase. Furthermore, an RRAM-based tunable delay element (RRAM-TDE) is used in the TCAM design to provide flexibility and robustness against RRAM switching variation. The resulting system demonstrates excellent speed, energy and area efficiency against other TCAM designs using CMOS and emerging non-volatile memory (eNVM). To the best of our knowledge, the proposed 64-bit 1-stage TCAM system's speed and energy consumption match the best performance reported by other eNVM-based TCAM designs. The proposed design on a 128-bit 2-stage system also has speed and energy consumption comparable to SRAM-based TCAMs with the extra advantages of (a) compact size (90% reduction) and (b) non-volatility.</description><subject>2T2R</subject><subject>Amplifiers</subject><subject>Arrays</subject><subject>Associative memory</subject><subject>Cascading</subject><subject>Current race</subject><subject>Delays</subject><subject>Design improvements</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Low-power memory design</subject><subject>Neural Network Acceleration</subject><subject>Random access memory</subject><subject>Resistance</subject><subject>RRAM</subject><subject>Sensors</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching circuits</subject><subject>TCAM</subject><subject>Tunable delay element</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhYMoWKt_QFwMuE6dRzKTWYZQrVBb6APchcnkJp2SJnEmFfrvnVoXrs5ZnO9e-ILgkeAJIVi-bBbpYjmhmLIJo4IwnFwFIyIjEmKcxNe-x4yHhMaft8Gdc3uMieBxMgrqFC26b2hQppxWpSoaQJss_UBbZ9oarVa-qrZE2dFaaAe0UhrQWu_gAKjqLJqZeheue4ASTVuw9SmcVpXR5rxN-74xWg2ma919cFOpxsHDX46D7et0k83C-fLtPUvnoaaSD2EhieQFqSLFGBcci6pSgkQxxzErsCpZIiVPCgw6UrIoC11A6QMEA48IzsbB8-Vub7uvI7gh33dH2_qXOU2wlCQWVPgVvay07ZyzUOW9NQdlTznB-Vlo_is0PwvN_4R66OkCGQD4BxAPxIz9ALuAcQE</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Pan, Kangqiang</creator><creator>Tosson, Amr M.S.</creator><creator>Wang, Ningxuan</creator><creator>Zhou, Norman Y.</creator><creator>Wei, Lan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4258-9971</orcidid><orcidid>https://orcid.org/0000-0003-0903-914X</orcidid><orcidid>https://orcid.org/0000-0002-7430-8767</orcidid><orcidid>https://orcid.org/0000-0003-2886-0259</orcidid></search><sort><creationdate>20230101</creationdate><title>A Novel Cascadable TCAM Using RRAM and Current Race Scheme for High-Speed Energy-Efficient Applications</title><author>Pan, Kangqiang ; Tosson, Amr M.S. ; Wang, Ningxuan ; Zhou, Norman Y. ; Wei, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-b9196b1f4a3367607ffa71456053b0ad389968b0ec4a9bdbcbedbdbe73e4a3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2T2R</topic><topic>Amplifiers</topic><topic>Arrays</topic><topic>Associative memory</topic><topic>Cascading</topic><topic>Current race</topic><topic>Delays</topic><topic>Design improvements</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Low-power memory design</topic><topic>Neural Network Acceleration</topic><topic>Random access memory</topic><topic>Resistance</topic><topic>RRAM</topic><topic>Sensors</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching circuits</topic><topic>TCAM</topic><topic>Tunable delay element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Kangqiang</creatorcontrib><creatorcontrib>Tosson, Amr M.S.</creatorcontrib><creatorcontrib>Wang, Ningxuan</creatorcontrib><creatorcontrib>Zhou, Norman Y.</creatorcontrib><creatorcontrib>Wei, Lan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pan, Kangqiang</au><au>Tosson, Amr M.S.</au><au>Wang, Ningxuan</au><au>Zhou, Norman Y.</au><au>Wei, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Cascadable TCAM Using RRAM and Current Race Scheme for High-Speed Energy-Efficient Applications</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>22</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>In this work, a novel ternary content addressable memory (TCAM) design is proposed using resistive random-access memory (RRAM) array in 2T2R configuration. The suggested memory array adopts the current-race (CR) sensing mechanism incorporated with a match-line (ML) booster in the sensing amplifier (SA) to improve energy efficiency, search speed and tolerance to RRAM switching variation. Several innovations are implemented to enhance the design further. For large TCAM arrays, match-line sensing amplifier (MLSA) direct cascading (DC) and an SR-latch cascading (SRC) schemes are proposed and compared in search speed, energy efficiency and MLSA noise margin. A same clock phase cascading (SCPC) scheme is also introduced to reduce latency in cascading structure by placing evaluation phase of all stages in the same clock phase. Furthermore, an RRAM-based tunable delay element (RRAM-TDE) is used in the TCAM design to provide flexibility and robustness against RRAM switching variation. The resulting system demonstrates excellent speed, energy and area efficiency against other TCAM designs using CMOS and emerging non-volatile memory (eNVM). To the best of our knowledge, the proposed 64-bit 1-stage TCAM system's speed and energy consumption match the best performance reported by other eNVM-based TCAM designs. The proposed design on a 128-bit 2-stage system also has speed and energy consumption comparable to SRAM-based TCAMs with the extra advantages of (a) compact size (90% reduction) and (b) non-volatility.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2023.3271308</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4258-9971</orcidid><orcidid>https://orcid.org/0000-0003-0903-914X</orcidid><orcidid>https://orcid.org/0000-0002-7430-8767</orcidid><orcidid>https://orcid.org/0000-0003-2886-0259</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2023-01, Vol.22, p.1-8
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_10111053
source IEEE Electronic Library (IEL)
subjects 2T2R
Amplifiers
Arrays
Associative memory
Cascading
Current race
Delays
Design improvements
Energy consumption
Energy efficiency
Low-power memory design
Neural Network Acceleration
Random access memory
Resistance
RRAM
Sensors
Switches
Switching
Switching circuits
TCAM
Tunable delay element
title A Novel Cascadable TCAM Using RRAM and Current Race Scheme for High-Speed Energy-Efficient Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Cascadable%20TCAM%20Using%20RRAM%20and%20Current%20Race%20Scheme%20for%20High-Speed%20Energy-Efficient%20Applications&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Pan,%20Kangqiang&rft.date=2023-01-01&rft.volume=22&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2023.3271308&rft_dat=%3Cproquest_RIE%3E2809915727%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809915727&rft_id=info:pmid/&rft_ieee_id=10111053&rfr_iscdi=true