Gaseous emission spectroscopy for equivalence ratio determination in a thermoacoustic combustor

This study explored an estimation method for equivalence ratio in a thermoacoustic combustor by combining emission spectroscopy and random forest (RF) model. Spectra signals under different equivalence ratios were experimentally acquired using a spectrograph. The measured signals were primarily proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-06, Vol.23 (12), p.1-1
Hauptverfasser: Li, Fangyan, Du, Minglong, Shi, Lei, Cui, Jiashan, Liang, Rihui, Du, Yuefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 12
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Li, Fangyan
Du, Minglong
Shi, Lei
Cui, Jiashan
Liang, Rihui
Du, Yuefan
description This study explored an estimation method for equivalence ratio in a thermoacoustic combustor by combining emission spectroscopy and random forest (RF) model. Spectra signals under different equivalence ratios were experimentally acquired using a spectrograph. The measured signals were primarily processed and five obvious spectral components were observed, including OH* (309.348 nm), CH* (430.482 nm), C 2 * (516.192 nm), K (766.188 nm) and H 2 O (927.119 nm). Characteristic peaks of the spectral components at various equivalence ratios were extracted to establish the raw features. Before regression modeling, feature importance of the spectral components were analyzed and taken as a reference to further optimize the raw features. A nonlinear regression model was then established based on the optimized features and RF algorithm. Results demonstrate that the equivalence ratio can be predicted by the proposed model with an average determination coefficient higher than 98%. The spectral information was proved an effective method for prediction of the equivalence ratio in the thermoacoustic pulse combustor.
doi_str_mv 10.1109/JSEN.2023.3269432
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10110372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10110372</ieee_id><sourcerecordid>2825602610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f649127386cbebce353190434f4a1b55639fa9a976b7d619e5f7869ff514dfe93</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxRdRsFY_gOAh4Hlr_mdzlFKrUvSggreQTSeY0t1sk63Qb-8u7cHTvBnem2F-RXFL8IwQrB9ePxZvM4opmzEqNWf0rJgQIaqSKF6dj5rhkjP1fVlc5bzBmGgl1KQwS5sh7jOCJuQcYotyB65PMbvYHZCPCcFuH37tFloHKNk-RLSGHlIT2rFpUWiRRf3PMInWDav64JCLTT2omK6LC2-3GW5OdVp8PS0-58_l6n35Mn9clY5y2Zdeck2oYpV0NdQOmGBEY86455bUQkimvdVWK1mrtSQahFeV1N4LwtceNJsW98e9XYq7PeTebOI-tcNJQysqJKaS4MFFji43PJgTeNOl0Nh0MASbkaMZOZqRozlxHDJ3x0wAgH_-wc4UZX_0aHDC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825602610</pqid></control><display><type>article</type><title>Gaseous emission spectroscopy for equivalence ratio determination in a thermoacoustic combustor</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Fangyan ; Du, Minglong ; Shi, Lei ; Cui, Jiashan ; Liang, Rihui ; Du, Yuefan</creator><creatorcontrib>Li, Fangyan ; Du, Minglong ; Shi, Lei ; Cui, Jiashan ; Liang, Rihui ; Du, Yuefan</creatorcontrib><description>This study explored an estimation method for equivalence ratio in a thermoacoustic combustor by combining emission spectroscopy and random forest (RF) model. Spectra signals under different equivalence ratios were experimentally acquired using a spectrograph. The measured signals were primarily processed and five obvious spectral components were observed, including OH* (309.348 nm), CH* (430.482 nm), C 2 * (516.192 nm), K (766.188 nm) and H 2 O (927.119 nm). Characteristic peaks of the spectral components at various equivalence ratios were extracted to establish the raw features. Before regression modeling, feature importance of the spectral components were analyzed and taken as a reference to further optimize the raw features. A nonlinear regression model was then established based on the optimized features and RF algorithm. Results demonstrate that the equivalence ratio can be predicted by the proposed model with an average determination coefficient higher than 98%. The spectral information was proved an effective method for prediction of the equivalence ratio in the thermoacoustic pulse combustor.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3269432</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Emission spectroscopy ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Feature importance ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Pulse combustor ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Random forest ; Algorithms ; Combustion ; Combustion chambers ; Decision trees ; Emission analysis ; Emission spectroscopy ; Equivalence ratio ; Fuels ; Pollution measurement ; Prediction algorithms ; Pulse combustion ; Radio frequency ; Regression models ; Sensors ; Spectrum analysis ; Thermoacoustics</subject><ispartof>IEEE sensors journal, 2023-06, Vol.23 (12), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f649127386cbebce353190434f4a1b55639fa9a976b7d619e5f7869ff514dfe93</cites><orcidid>0000-0002-3716-5154 ; 0000-0003-3199-2711 ; 0000-0003-1156-9668 ; 0000-0001-8415-5322 ; 0000-0002-4129-6894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10110372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10110372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Fangyan</creatorcontrib><creatorcontrib>Du, Minglong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Cui, Jiashan</creatorcontrib><creatorcontrib>Liang, Rihui</creatorcontrib><creatorcontrib>Du, Yuefan</creatorcontrib><title>Gaseous emission spectroscopy for equivalence ratio determination in a thermoacoustic combustor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This study explored an estimation method for equivalence ratio in a thermoacoustic combustor by combining emission spectroscopy and random forest (RF) model. Spectra signals under different equivalence ratios were experimentally acquired using a spectrograph. The measured signals were primarily processed and five obvious spectral components were observed, including OH* (309.348 nm), CH* (430.482 nm), C 2 * (516.192 nm), K (766.188 nm) and H 2 O (927.119 nm). Characteristic peaks of the spectral components at various equivalence ratios were extracted to establish the raw features. Before regression modeling, feature importance of the spectral components were analyzed and taken as a reference to further optimize the raw features. A nonlinear regression model was then established based on the optimized features and RF algorithm. Results demonstrate that the equivalence ratio can be predicted by the proposed model with an average determination coefficient higher than 98%. The spectral information was proved an effective method for prediction of the equivalence ratio in the thermoacoustic pulse combustor.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Emission spectroscopy</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Feature importance</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Pulse combustor</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Random forest</subject><subject>Algorithms</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Decision trees</subject><subject>Emission analysis</subject><subject>Emission spectroscopy</subject><subject>Equivalence ratio</subject><subject>Fuels</subject><subject>Pollution measurement</subject><subject>Prediction algorithms</subject><subject>Pulse combustion</subject><subject>Radio frequency</subject><subject>Regression models</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Thermoacoustics</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxRdRsFY_gOAh4Hlr_mdzlFKrUvSggreQTSeY0t1sk63Qb-8u7cHTvBnem2F-RXFL8IwQrB9ePxZvM4opmzEqNWf0rJgQIaqSKF6dj5rhkjP1fVlc5bzBmGgl1KQwS5sh7jOCJuQcYotyB65PMbvYHZCPCcFuH37tFloHKNk-RLSGHlIT2rFpUWiRRf3PMInWDav64JCLTT2omK6LC2-3GW5OdVp8PS0-58_l6n35Mn9clY5y2Zdeck2oYpV0NdQOmGBEY86455bUQkimvdVWK1mrtSQahFeV1N4LwtceNJsW98e9XYq7PeTebOI-tcNJQysqJKaS4MFFji43PJgTeNOl0Nh0MASbkaMZOZqRozlxHDJ3x0wAgH_-wc4UZX_0aHDC</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Li, Fangyan</creator><creator>Du, Minglong</creator><creator>Shi, Lei</creator><creator>Cui, Jiashan</creator><creator>Liang, Rihui</creator><creator>Du, Yuefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3716-5154</orcidid><orcidid>https://orcid.org/0000-0003-3199-2711</orcidid><orcidid>https://orcid.org/0000-0003-1156-9668</orcidid><orcidid>https://orcid.org/0000-0001-8415-5322</orcidid><orcidid>https://orcid.org/0000-0002-4129-6894</orcidid></search><sort><creationdate>20230615</creationdate><title>Gaseous emission spectroscopy for equivalence ratio determination in a thermoacoustic combustor</title><author>Li, Fangyan ; Du, Minglong ; Shi, Lei ; Cui, Jiashan ; Liang, Rihui ; Du, Yuefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f649127386cbebce353190434f4a1b55639fa9a976b7d619e5f7869ff514dfe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Emission spectroscopy</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Feature importance</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Pulse combustor</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Random forest</topic><topic>Algorithms</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Decision trees</topic><topic>Emission analysis</topic><topic>Emission spectroscopy</topic><topic>Equivalence ratio</topic><topic>Fuels</topic><topic>Pollution measurement</topic><topic>Prediction algorithms</topic><topic>Pulse combustion</topic><topic>Radio frequency</topic><topic>Regression models</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fangyan</creatorcontrib><creatorcontrib>Du, Minglong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Cui, Jiashan</creatorcontrib><creatorcontrib>Liang, Rihui</creatorcontrib><creatorcontrib>Du, Yuefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Fangyan</au><au>Du, Minglong</au><au>Shi, Lei</au><au>Cui, Jiashan</au><au>Liang, Rihui</au><au>Du, Yuefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaseous emission spectroscopy for equivalence ratio determination in a thermoacoustic combustor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-06-15</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This study explored an estimation method for equivalence ratio in a thermoacoustic combustor by combining emission spectroscopy and random forest (RF) model. Spectra signals under different equivalence ratios were experimentally acquired using a spectrograph. The measured signals were primarily processed and five obvious spectral components were observed, including OH* (309.348 nm), CH* (430.482 nm), C 2 * (516.192 nm), K (766.188 nm) and H 2 O (927.119 nm). Characteristic peaks of the spectral components at various equivalence ratios were extracted to establish the raw features. Before regression modeling, feature importance of the spectral components were analyzed and taken as a reference to further optimize the raw features. A nonlinear regression model was then established based on the optimized features and RF algorithm. Results demonstrate that the equivalence ratio can be predicted by the proposed model with an average determination coefficient higher than 98%. The spectral information was proved an effective method for prediction of the equivalence ratio in the thermoacoustic pulse combustor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3269432</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3716-5154</orcidid><orcidid>https://orcid.org/0000-0003-3199-2711</orcidid><orcidid>https://orcid.org/0000-0003-1156-9668</orcidid><orcidid>https://orcid.org/0000-0001-8415-5322</orcidid><orcidid>https://orcid.org/0000-0002-4129-6894</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-06, Vol.23 (12), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10110372
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Emission spectroscopy
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Feature importance
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Pulse combustor
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Random forest
Algorithms
Combustion
Combustion chambers
Decision trees
Emission analysis
Emission spectroscopy
Equivalence ratio
Fuels
Pollution measurement
Prediction algorithms
Pulse combustion
Radio frequency
Regression models
Sensors
Spectrum analysis
Thermoacoustics
title Gaseous emission spectroscopy for equivalence ratio determination in a thermoacoustic combustor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaseous%20emission%20spectroscopy%20for%20equivalence%20ratio%20determination%20in%20a%20thermoacoustic%20combustor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Fangyan&rft.date=2023-06-15&rft.volume=23&rft.issue=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3269432&rft_dat=%3Cproquest_RIE%3E2825602610%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825602610&rft_id=info:pmid/&rft_ieee_id=10110372&rfr_iscdi=true