O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier

This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the refer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2023-08, Vol.38 (8), p.1-10
Hauptverfasser: Mejia-Ruiz, Gabriel E., Paternina, Mario R. Arrieta, Serna, Jose Antonio de la O, Zamora-Mendez, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 8
container_start_page 1
container_title IEEE transactions on power electronics
container_volume 38
creator Mejia-Ruiz, Gabriel E.
Paternina, Mario R. Arrieta
Serna, Jose Antonio de la O
Zamora-Mendez, Alejandro
description This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.
doi_str_mv 10.1109/TPEL.2023.3270268
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10108052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10108052</ieee_id><sourcerecordid>2828940907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Hrqe5OvmaWGRguVlrauwyR5U6bEpM6kYP-9Ke3C1d2c-97lMPaIMEEE9bJZTucTASKchCIFkcgrNkIVIQeE9JqNQMqYS6XCW3bn_Q4AoxhwxFYLvt43tiXP37SnOsjtL9U8d_RzoLY6BrO2p63TTbBubG3bLf_sagqyru1d1zTkAtO5YJlnwYqq3hpL7p7dGN14erjkmH3l0032weeL91n2OueVUFHPZalUbNKoTGWZViBjFMokSa1DRXVtpFFaxhqrtDJJrIyWKWIZyRIkaQwrDMfs-Xx377phrO-LXXdw7fCyEFJIFYGCdKDwTFWu896RKfbOfmt3LBCKk7ripK44qSsu6obO07ljiegfjyAhFuEfw0tpvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828940907</pqid></control><display><type>article</type><title>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</title><source>IEEE Xplore</source><creator>Mejia-Ruiz, Gabriel E. ; Paternina, Mario R. Arrieta ; Serna, Jose Antonio de la O ; Zamora-Mendez, Alejandro</creator><creatorcontrib>Mejia-Ruiz, Gabriel E. ; Paternina, Mario R. Arrieta ; Serna, Jose Antonio de la O ; Zamora-Mendez, Alejandro</creatorcontrib><description>This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3270268</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active rectifier ; adaptive hysteresis band ; Control systems ; Control systems design ; Controllers ; discrete-time taylor-fourier transform ; Electric potential ; Estimation ; Fourier transforms ; GaN switches ; Harmonic distortion ; Load fluctuation ; non-linear control ; o-splines ; Phasors ; Power factor ; power factor correction ; Rectifiers ; Robust control ; Semiconductor diodes ; Sliding mode control ; Surface stability ; Switching frequency ; Synchronization ; Voltage ; Voltage control ; Voltage measurement</subject><ispartof>IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</citedby><cites>FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</cites><orcidid>0000-0002-2121-6420 ; 0000-0001-5479-9856 ; 0000-0002-4491-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10108052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10108052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mejia-Ruiz, Gabriel E.</creatorcontrib><creatorcontrib>Paternina, Mario R. Arrieta</creatorcontrib><creatorcontrib>Serna, Jose Antonio de la O</creatorcontrib><creatorcontrib>Zamora-Mendez, Alejandro</creatorcontrib><title>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.</description><subject>Active rectifier</subject><subject>adaptive hysteresis band</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>discrete-time taylor-fourier transform</subject><subject>Electric potential</subject><subject>Estimation</subject><subject>Fourier transforms</subject><subject>GaN switches</subject><subject>Harmonic distortion</subject><subject>Load fluctuation</subject><subject>non-linear control</subject><subject>o-splines</subject><subject>Phasors</subject><subject>Power factor</subject><subject>power factor correction</subject><subject>Rectifiers</subject><subject>Robust control</subject><subject>Semiconductor diodes</subject><subject>Sliding mode control</subject><subject>Surface stability</subject><subject>Switching frequency</subject><subject>Synchronization</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Hrqe5OvmaWGRguVlrauwyR5U6bEpM6kYP-9Ke3C1d2c-97lMPaIMEEE9bJZTucTASKchCIFkcgrNkIVIQeE9JqNQMqYS6XCW3bn_Q4AoxhwxFYLvt43tiXP37SnOsjtL9U8d_RzoLY6BrO2p63TTbBubG3bLf_sagqyru1d1zTkAtO5YJlnwYqq3hpL7p7dGN14erjkmH3l0032weeL91n2OueVUFHPZalUbNKoTGWZViBjFMokSa1DRXVtpFFaxhqrtDJJrIyWKWIZyRIkaQwrDMfs-Xx377phrO-LXXdw7fCyEFJIFYGCdKDwTFWu896RKfbOfmt3LBCKk7ripK44qSsu6obO07ljiegfjyAhFuEfw0tpvQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mejia-Ruiz, Gabriel E.</creator><creator>Paternina, Mario R. Arrieta</creator><creator>Serna, Jose Antonio de la O</creator><creator>Zamora-Mendez, Alejandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2121-6420</orcidid><orcidid>https://orcid.org/0000-0001-5479-9856</orcidid><orcidid>https://orcid.org/0000-0002-4491-9620</orcidid></search><sort><creationdate>20230801</creationdate><title>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</title><author>Mejia-Ruiz, Gabriel E. ; Paternina, Mario R. Arrieta ; Serna, Jose Antonio de la O ; Zamora-Mendez, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active rectifier</topic><topic>adaptive hysteresis band</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>discrete-time taylor-fourier transform</topic><topic>Electric potential</topic><topic>Estimation</topic><topic>Fourier transforms</topic><topic>GaN switches</topic><topic>Harmonic distortion</topic><topic>Load fluctuation</topic><topic>non-linear control</topic><topic>o-splines</topic><topic>Phasors</topic><topic>Power factor</topic><topic>power factor correction</topic><topic>Rectifiers</topic><topic>Robust control</topic><topic>Semiconductor diodes</topic><topic>Sliding mode control</topic><topic>Surface stability</topic><topic>Switching frequency</topic><topic>Synchronization</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mejia-Ruiz, Gabriel E.</creatorcontrib><creatorcontrib>Paternina, Mario R. Arrieta</creatorcontrib><creatorcontrib>Serna, Jose Antonio de la O</creatorcontrib><creatorcontrib>Zamora-Mendez, Alejandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mejia-Ruiz, Gabriel E.</au><au>Paternina, Mario R. Arrieta</au><au>Serna, Jose Antonio de la O</au><au>Zamora-Mendez, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>38</volume><issue>8</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3270268</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2121-6420</orcidid><orcidid>https://orcid.org/0000-0001-5479-9856</orcidid><orcidid>https://orcid.org/0000-0002-4491-9620</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-10
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10108052
source IEEE Xplore
subjects Active rectifier
adaptive hysteresis band
Control systems
Control systems design
Controllers
discrete-time taylor-fourier transform
Electric potential
Estimation
Fourier transforms
GaN switches
Harmonic distortion
Load fluctuation
non-linear control
o-splines
Phasors
Power factor
power factor correction
Rectifiers
Robust control
Semiconductor diodes
Sliding mode control
Surface stability
Switching frequency
Synchronization
Voltage
Voltage control
Voltage measurement
title O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-Splines-Based%20Fixed-Frequency%20Integral%20Sliding-Mode%20Controller%20for%20PFC%20Rectifier&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Mejia-Ruiz,%20Gabriel%20E.&rft.date=2023-08-01&rft.volume=38&rft.issue=8&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3270268&rft_dat=%3Cproquest_RIE%3E2828940907%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828940907&rft_id=info:pmid/&rft_ieee_id=10108052&rfr_iscdi=true