O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier
This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the refer...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2023-08, Vol.38 (8), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Mejia-Ruiz, Gabriel E. Paternina, Mario R. Arrieta Serna, Jose Antonio de la O Zamora-Mendez, Alejandro |
description | This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage. |
doi_str_mv | 10.1109/TPEL.2023.3270268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10108052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10108052</ieee_id><sourcerecordid>2828940907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Hrqe5OvmaWGRguVlrauwyR5U6bEpM6kYP-9Ke3C1d2c-97lMPaIMEEE9bJZTucTASKchCIFkcgrNkIVIQeE9JqNQMqYS6XCW3bn_Q4AoxhwxFYLvt43tiXP37SnOsjtL9U8d_RzoLY6BrO2p63TTbBubG3bLf_sagqyru1d1zTkAtO5YJlnwYqq3hpL7p7dGN14erjkmH3l0032weeL91n2OueVUFHPZalUbNKoTGWZViBjFMokSa1DRXVtpFFaxhqrtDJJrIyWKWIZyRIkaQwrDMfs-Xx377phrO-LXXdw7fCyEFJIFYGCdKDwTFWu896RKfbOfmt3LBCKk7ripK44qSsu6obO07ljiegfjyAhFuEfw0tpvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828940907</pqid></control><display><type>article</type><title>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</title><source>IEEE Xplore</source><creator>Mejia-Ruiz, Gabriel E. ; Paternina, Mario R. Arrieta ; Serna, Jose Antonio de la O ; Zamora-Mendez, Alejandro</creator><creatorcontrib>Mejia-Ruiz, Gabriel E. ; Paternina, Mario R. Arrieta ; Serna, Jose Antonio de la O ; Zamora-Mendez, Alejandro</creatorcontrib><description>This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3270268</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active rectifier ; adaptive hysteresis band ; Control systems ; Control systems design ; Controllers ; discrete-time taylor-fourier transform ; Electric potential ; Estimation ; Fourier transforms ; GaN switches ; Harmonic distortion ; Load fluctuation ; non-linear control ; o-splines ; Phasors ; Power factor ; power factor correction ; Rectifiers ; Robust control ; Semiconductor diodes ; Sliding mode control ; Surface stability ; Switching frequency ; Synchronization ; Voltage ; Voltage control ; Voltage measurement</subject><ispartof>IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</citedby><cites>FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</cites><orcidid>0000-0002-2121-6420 ; 0000-0001-5479-9856 ; 0000-0002-4491-9620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10108052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10108052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mejia-Ruiz, Gabriel E.</creatorcontrib><creatorcontrib>Paternina, Mario R. Arrieta</creatorcontrib><creatorcontrib>Serna, Jose Antonio de la O</creatorcontrib><creatorcontrib>Zamora-Mendez, Alejandro</creatorcontrib><title>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.</description><subject>Active rectifier</subject><subject>adaptive hysteresis band</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>discrete-time taylor-fourier transform</subject><subject>Electric potential</subject><subject>Estimation</subject><subject>Fourier transforms</subject><subject>GaN switches</subject><subject>Harmonic distortion</subject><subject>Load fluctuation</subject><subject>non-linear control</subject><subject>o-splines</subject><subject>Phasors</subject><subject>Power factor</subject><subject>power factor correction</subject><subject>Rectifiers</subject><subject>Robust control</subject><subject>Semiconductor diodes</subject><subject>Sliding mode control</subject><subject>Surface stability</subject><subject>Switching frequency</subject><subject>Synchronization</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOAi4Hrqe5OvmaWGRguVlrauwyR5U6bEpM6kYP-9Ke3C1d2c-97lMPaIMEEE9bJZTucTASKchCIFkcgrNkIVIQeE9JqNQMqYS6XCW3bn_Q4AoxhwxFYLvt43tiXP37SnOsjtL9U8d_RzoLY6BrO2p63TTbBubG3bLf_sagqyru1d1zTkAtO5YJlnwYqq3hpL7p7dGN14erjkmH3l0032weeL91n2OueVUFHPZalUbNKoTGWZViBjFMokSa1DRXVtpFFaxhqrtDJJrIyWKWIZyRIkaQwrDMfs-Xx377phrO-LXXdw7fCyEFJIFYGCdKDwTFWu896RKfbOfmt3LBCKk7ripK44qSsu6obO07ljiegfjyAhFuEfw0tpvQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Mejia-Ruiz, Gabriel E.</creator><creator>Paternina, Mario R. Arrieta</creator><creator>Serna, Jose Antonio de la O</creator><creator>Zamora-Mendez, Alejandro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2121-6420</orcidid><orcidid>https://orcid.org/0000-0001-5479-9856</orcidid><orcidid>https://orcid.org/0000-0002-4491-9620</orcidid></search><sort><creationdate>20230801</creationdate><title>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</title><author>Mejia-Ruiz, Gabriel E. ; Paternina, Mario R. Arrieta ; Serna, Jose Antonio de la O ; Zamora-Mendez, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8b995f74b78b7c085129f66da39eddf8f9a85a1c7cf659fa8711b48b08ea13c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active rectifier</topic><topic>adaptive hysteresis band</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>discrete-time taylor-fourier transform</topic><topic>Electric potential</topic><topic>Estimation</topic><topic>Fourier transforms</topic><topic>GaN switches</topic><topic>Harmonic distortion</topic><topic>Load fluctuation</topic><topic>non-linear control</topic><topic>o-splines</topic><topic>Phasors</topic><topic>Power factor</topic><topic>power factor correction</topic><topic>Rectifiers</topic><topic>Robust control</topic><topic>Semiconductor diodes</topic><topic>Sliding mode control</topic><topic>Surface stability</topic><topic>Switching frequency</topic><topic>Synchronization</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mejia-Ruiz, Gabriel E.</creatorcontrib><creatorcontrib>Paternina, Mario R. Arrieta</creatorcontrib><creatorcontrib>Serna, Jose Antonio de la O</creatorcontrib><creatorcontrib>Zamora-Mendez, Alejandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mejia-Ruiz, Gabriel E.</au><au>Paternina, Mario R. Arrieta</au><au>Serna, Jose Antonio de la O</au><au>Zamora-Mendez, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>38</volume><issue>8</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper proposes a fast-response sliding mode controller (SMC) for a semi-bridgeless boost converter under large and quick load fluctuations to ensure tight output voltage regulation and unity power factor correction (PFC) at the line side. In this sense, a novel approach for estimating the reference current profile is presented focusing on the real-time phasor estimation via the O-splines of the discrete-time Taylor-Fourier transform (DTTFT). This method allows for improving the computational efficiency and dynamic performance of the estimations of amplitude, frequency and phase of the network voltage used for the generation of the reference current profile. Several aspects of the controller design are discussed, including the choice of the sliding surface, the existence and stability conditions, and the implementation of an adaptive hysteresis band to fix the switching frequency and reduce zero-crossing distortion. Experimental results of a GaN-based prototype validate the theoretical predictions, exhibiting a PF close to 1 and a total harmonic distortion lower than 3.2% in presence of load changes of up to 50% and changes in the output voltage set point. Several comprehensive experimental comparisons between the proposed framework and the most widely used methods recently reported in the literature are accomplished in terms of transitory and steady-state responses. The robustness of the proposed control approach is experimentally demonstrated under sag conditions and a wide operating range of the input voltage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3270268</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2121-6420</orcidid><orcidid>https://orcid.org/0000-0001-5479-9856</orcidid><orcidid>https://orcid.org/0000-0002-4491-9620</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-10 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_10108052 |
source | IEEE Xplore |
subjects | Active rectifier adaptive hysteresis band Control systems Control systems design Controllers discrete-time taylor-fourier transform Electric potential Estimation Fourier transforms GaN switches Harmonic distortion Load fluctuation non-linear control o-splines Phasors Power factor power factor correction Rectifiers Robust control Semiconductor diodes Sliding mode control Surface stability Switching frequency Synchronization Voltage Voltage control Voltage measurement |
title | O-Splines-Based Fixed-Frequency Integral Sliding-Mode Controller for PFC Rectifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-Splines-Based%20Fixed-Frequency%20Integral%20Sliding-Mode%20Controller%20for%20PFC%20Rectifier&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Mejia-Ruiz,%20Gabriel%20E.&rft.date=2023-08-01&rft.volume=38&rft.issue=8&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3270268&rft_dat=%3Cproquest_RIE%3E2828940907%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828940907&rft_id=info:pmid/&rft_ieee_id=10108052&rfr_iscdi=true |