Studies to reduce material erosion in electrothermal launchers

Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) 1991-01, Vol.27 (1), p.476-481
Hauptverfasser: Gilligan, J., Bourham, M., Hankins, O., Auciello, O., Tallavarjula, S., Mohanti, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 1
container_start_page 476
container_title IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)
container_volume 27
creator Gilligan, J.
Bourham, M.
Hankins, O.
Auciello, O.
Tallavarjula, S.
Mohanti, R.
description Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).< >
doi_str_mv 10.1109/20.101079
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_101079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>101079</ieee_id><sourcerecordid>28619779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</originalsourceid><addsrcrecordid>eNqN0b9LxDAUB_AgCp6ng6tTcRAcqi9pkiaLIIe_4MBBnUubvnKRtjmTdPC_N14d3HT6Jnw_hPAeIacUrigFfc1SAoVS75EF1ZzmAFLvkwUAVbnmkh-SoxDe05ULCgty8xKn1mLIoss8tpPBbKgjelv3GXoXrBszO2bYo4nexQ36ITV9PY0mncMxOejqPuDJTy7J2_3d6-oxXz8_PK1u17kppIy5QlRcNRoQJEUhGEDXGDSt4jUWmkksdaOYkl3biKJRDSsBWamlKCVPZbEk5_O7LkRbBWMjmo1x45i-VQkpRMFUQhcz2nr3MWGI1WCDwb6vR3RTqJhSEnjB_gEl1WWp_4aCCygYTfByhibNLHjsqq23Q-0_KwrV92IqlnK3mGTPZmsR8ZfblV_Jm4aS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25450321</pqid></control><display><type>article</type><title>Studies to reduce material erosion in electrothermal launchers</title><source>IEEE Electronic Library (IEL)</source><creator>Gilligan, J. ; Bourham, M. ; Hankins, O. ; Auciello, O. ; Tallavarjula, S. ; Mohanti, R.</creator><creatorcontrib>Gilligan, J. ; Bourham, M. ; Hankins, O. ; Auciello, O. ; Tallavarjula, S. ; Mohanti, R.</creatorcontrib><description>Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).&lt; &gt;</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.101079</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700430 -- Fusion Technology-- Magnet Coils &amp; Fields-- (1992-) ; Aluminum ; BOUNDARY LAYERS ; COMPUTERIZED SIMULATION ; Conducting materials ; Copper ; ELECTRONIC EQUIPMENT ; Electrothermal launching ; EROSION ; HEAT FLUX ; Inorganic materials ; Insulation ; LAYERS ; MAGNETIC FIELDS ; Magnetic materials ; Magnetic shielding ; MATERIALS TESTING ; Metal-insulator structures ; MULTI-CHANNEL ANALYZERS ; OPTICALLY THICK PLASMA ; PLASMA ; PLASMA FLUID EQUATIONS ; PLASMA GUNS ; Plasma materials processing ; PLASMA PRODUCTION ; PLASMA SCRAPE-OFF LAYER ; PLASMA SIMULATION ; PULSE ANALYZERS ; REACTOR COMPONENTS ; SHIELDING ; SIMULATION ; SURFACES ; TEMPERATURE RANGE ; TEMPERATURE RANGE 0065-0273 K ; TESTING 700411 -- Inertial Confinement Devices-- (1992-) ; THERMAL CYCLING</subject><ispartof>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1991-01, Vol.27 (1), p.476-481</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</citedby><cites>FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/101079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,796,885,23929,23930,25139,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/101079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/5655328$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilligan, J.</creatorcontrib><creatorcontrib>Bourham, M.</creatorcontrib><creatorcontrib>Hankins, O.</creatorcontrib><creatorcontrib>Auciello, O.</creatorcontrib><creatorcontrib>Tallavarjula, S.</creatorcontrib><creatorcontrib>Mohanti, R.</creatorcontrib><title>Studies to reduce material erosion in electrothermal launchers</title><title>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TMAG</addtitle><description>Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).&lt; &gt;</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700430 -- Fusion Technology-- Magnet Coils &amp; Fields-- (1992-)</subject><subject>Aluminum</subject><subject>BOUNDARY LAYERS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Conducting materials</subject><subject>Copper</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>Electrothermal launching</subject><subject>EROSION</subject><subject>HEAT FLUX</subject><subject>Inorganic materials</subject><subject>Insulation</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic materials</subject><subject>Magnetic shielding</subject><subject>MATERIALS TESTING</subject><subject>Metal-insulator structures</subject><subject>MULTI-CHANNEL ANALYZERS</subject><subject>OPTICALLY THICK PLASMA</subject><subject>PLASMA</subject><subject>PLASMA FLUID EQUATIONS</subject><subject>PLASMA GUNS</subject><subject>Plasma materials processing</subject><subject>PLASMA PRODUCTION</subject><subject>PLASMA SCRAPE-OFF LAYER</subject><subject>PLASMA SIMULATION</subject><subject>PULSE ANALYZERS</subject><subject>REACTOR COMPONENTS</subject><subject>SHIELDING</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>TEMPERATURE RANGE</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>TESTING 700411 -- Inertial Confinement Devices-- (1992-)</subject><subject>THERMAL CYCLING</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0b9LxDAUB_AgCp6ng6tTcRAcqi9pkiaLIIe_4MBBnUubvnKRtjmTdPC_N14d3HT6Jnw_hPAeIacUrigFfc1SAoVS75EF1ZzmAFLvkwUAVbnmkh-SoxDe05ULCgty8xKn1mLIoss8tpPBbKgjelv3GXoXrBszO2bYo4nexQ36ITV9PY0mncMxOejqPuDJTy7J2_3d6-oxXz8_PK1u17kppIy5QlRcNRoQJEUhGEDXGDSt4jUWmkksdaOYkl3biKJRDSsBWamlKCVPZbEk5_O7LkRbBWMjmo1x45i-VQkpRMFUQhcz2nr3MWGI1WCDwb6vR3RTqJhSEnjB_gEl1WWp_4aCCygYTfByhibNLHjsqq23Q-0_KwrV92IqlnK3mGTPZmsR8ZfblV_Jm4aS</recordid><startdate>199101</startdate><enddate>199101</enddate><creator>Gilligan, J.</creator><creator>Bourham, M.</creator><creator>Hankins, O.</creator><creator>Auciello, O.</creator><creator>Tallavarjula, S.</creator><creator>Mohanti, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>199101</creationdate><title>Studies to reduce material erosion in electrothermal launchers</title><author>Gilligan, J. ; Bourham, M. ; Hankins, O. ; Auciello, O. ; Tallavarjula, S. ; Mohanti, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700430 -- Fusion Technology-- Magnet Coils &amp; Fields-- (1992-)</topic><topic>Aluminum</topic><topic>BOUNDARY LAYERS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Conducting materials</topic><topic>Copper</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>Electrothermal launching</topic><topic>EROSION</topic><topic>HEAT FLUX</topic><topic>Inorganic materials</topic><topic>Insulation</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic materials</topic><topic>Magnetic shielding</topic><topic>MATERIALS TESTING</topic><topic>Metal-insulator structures</topic><topic>MULTI-CHANNEL ANALYZERS</topic><topic>OPTICALLY THICK PLASMA</topic><topic>PLASMA</topic><topic>PLASMA FLUID EQUATIONS</topic><topic>PLASMA GUNS</topic><topic>Plasma materials processing</topic><topic>PLASMA PRODUCTION</topic><topic>PLASMA SCRAPE-OFF LAYER</topic><topic>PLASMA SIMULATION</topic><topic>PULSE ANALYZERS</topic><topic>REACTOR COMPONENTS</topic><topic>SHIELDING</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>TEMPERATURE RANGE</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>TESTING 700411 -- Inertial Confinement Devices-- (1992-)</topic><topic>THERMAL CYCLING</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilligan, J.</creatorcontrib><creatorcontrib>Bourham, M.</creatorcontrib><creatorcontrib>Hankins, O.</creatorcontrib><creatorcontrib>Auciello, O.</creatorcontrib><creatorcontrib>Tallavarjula, S.</creatorcontrib><creatorcontrib>Mohanti, R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilligan, J.</au><au>Bourham, M.</au><au>Hankins, O.</au><au>Auciello, O.</au><au>Tallavarjula, S.</au><au>Mohanti, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies to reduce material erosion in electrothermal launchers</atitle><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TMAG</stitle><date>1991-01</date><risdate>1991</risdate><volume>27</volume><issue>1</issue><spage>476</spage><epage>481</epage><pages>476-481</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/20.101079</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1991-01, Vol.27 (1), p.476-481
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_101079
source IEEE Electronic Library (IEL)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-)
Aluminum
BOUNDARY LAYERS
COMPUTERIZED SIMULATION
Conducting materials
Copper
ELECTRONIC EQUIPMENT
Electrothermal launching
EROSION
HEAT FLUX
Inorganic materials
Insulation
LAYERS
MAGNETIC FIELDS
Magnetic materials
Magnetic shielding
MATERIALS TESTING
Metal-insulator structures
MULTI-CHANNEL ANALYZERS
OPTICALLY THICK PLASMA
PLASMA
PLASMA FLUID EQUATIONS
PLASMA GUNS
Plasma materials processing
PLASMA PRODUCTION
PLASMA SCRAPE-OFF LAYER
PLASMA SIMULATION
PULSE ANALYZERS
REACTOR COMPONENTS
SHIELDING
SIMULATION
SURFACES
TEMPERATURE RANGE
TEMPERATURE RANGE 0065-0273 K
TESTING 700411 -- Inertial Confinement Devices-- (1992-)
THERMAL CYCLING
title Studies to reduce material erosion in electrothermal launchers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20to%20reduce%20material%20erosion%20in%20electrothermal%20launchers&rft.jtitle=IEEE%20Transactions%20on%20Magnetics%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Gilligan,%20J.&rft.date=1991-01&rft.volume=27&rft.issue=1&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.101079&rft_dat=%3Cproquest_RIE%3E28619779%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25450321&rft_id=info:pmid/&rft_ieee_id=101079&rfr_iscdi=true