Studies to reduce material erosion in electrothermal launchers
Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, w...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) 1991-01, Vol.27 (1), p.476-481 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 1 |
container_start_page | 476 |
container_title | IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States) |
container_volume | 27 |
creator | Gilligan, J. Bourham, M. Hankins, O. Auciello, O. Tallavarjula, S. Mohanti, R. |
description | Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).< > |
doi_str_mv | 10.1109/20.101079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_101079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>101079</ieee_id><sourcerecordid>28619779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</originalsourceid><addsrcrecordid>eNqN0b9LxDAUB_AgCp6ng6tTcRAcqi9pkiaLIIe_4MBBnUubvnKRtjmTdPC_N14d3HT6Jnw_hPAeIacUrigFfc1SAoVS75EF1ZzmAFLvkwUAVbnmkh-SoxDe05ULCgty8xKn1mLIoss8tpPBbKgjelv3GXoXrBszO2bYo4nexQ36ITV9PY0mncMxOejqPuDJTy7J2_3d6-oxXz8_PK1u17kppIy5QlRcNRoQJEUhGEDXGDSt4jUWmkksdaOYkl3biKJRDSsBWamlKCVPZbEk5_O7LkRbBWMjmo1x45i-VQkpRMFUQhcz2nr3MWGI1WCDwb6vR3RTqJhSEnjB_gEl1WWp_4aCCygYTfByhibNLHjsqq23Q-0_KwrV92IqlnK3mGTPZmsR8ZfblV_Jm4aS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25450321</pqid></control><display><type>article</type><title>Studies to reduce material erosion in electrothermal launchers</title><source>IEEE Electronic Library (IEL)</source><creator>Gilligan, J. ; Bourham, M. ; Hankins, O. ; Auciello, O. ; Tallavarjula, S. ; Mohanti, R.</creator><creatorcontrib>Gilligan, J. ; Bourham, M. ; Hankins, O. ; Auciello, O. ; Tallavarjula, S. ; Mohanti, R.</creatorcontrib><description>Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).< ></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.101079</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-) ; Aluminum ; BOUNDARY LAYERS ; COMPUTERIZED SIMULATION ; Conducting materials ; Copper ; ELECTRONIC EQUIPMENT ; Electrothermal launching ; EROSION ; HEAT FLUX ; Inorganic materials ; Insulation ; LAYERS ; MAGNETIC FIELDS ; Magnetic materials ; Magnetic shielding ; MATERIALS TESTING ; Metal-insulator structures ; MULTI-CHANNEL ANALYZERS ; OPTICALLY THICK PLASMA ; PLASMA ; PLASMA FLUID EQUATIONS ; PLASMA GUNS ; Plasma materials processing ; PLASMA PRODUCTION ; PLASMA SCRAPE-OFF LAYER ; PLASMA SIMULATION ; PULSE ANALYZERS ; REACTOR COMPONENTS ; SHIELDING ; SIMULATION ; SURFACES ; TEMPERATURE RANGE ; TEMPERATURE RANGE 0065-0273 K ; TESTING 700411 -- Inertial Confinement Devices-- (1992-) ; THERMAL CYCLING</subject><ispartof>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1991-01, Vol.27 (1), p.476-481</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</citedby><cites>FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/101079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,796,885,23929,23930,25139,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/101079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/5655328$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilligan, J.</creatorcontrib><creatorcontrib>Bourham, M.</creatorcontrib><creatorcontrib>Hankins, O.</creatorcontrib><creatorcontrib>Auciello, O.</creatorcontrib><creatorcontrib>Tallavarjula, S.</creatorcontrib><creatorcontrib>Mohanti, R.</creatorcontrib><title>Studies to reduce material erosion in electrothermal launchers</title><title>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TMAG</addtitle><description>Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).< ></description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-)</subject><subject>Aluminum</subject><subject>BOUNDARY LAYERS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Conducting materials</subject><subject>Copper</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>Electrothermal launching</subject><subject>EROSION</subject><subject>HEAT FLUX</subject><subject>Inorganic materials</subject><subject>Insulation</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic materials</subject><subject>Magnetic shielding</subject><subject>MATERIALS TESTING</subject><subject>Metal-insulator structures</subject><subject>MULTI-CHANNEL ANALYZERS</subject><subject>OPTICALLY THICK PLASMA</subject><subject>PLASMA</subject><subject>PLASMA FLUID EQUATIONS</subject><subject>PLASMA GUNS</subject><subject>Plasma materials processing</subject><subject>PLASMA PRODUCTION</subject><subject>PLASMA SCRAPE-OFF LAYER</subject><subject>PLASMA SIMULATION</subject><subject>PULSE ANALYZERS</subject><subject>REACTOR COMPONENTS</subject><subject>SHIELDING</subject><subject>SIMULATION</subject><subject>SURFACES</subject><subject>TEMPERATURE RANGE</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>TESTING 700411 -- Inertial Confinement Devices-- (1992-)</subject><subject>THERMAL CYCLING</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqN0b9LxDAUB_AgCp6ng6tTcRAcqi9pkiaLIIe_4MBBnUubvnKRtjmTdPC_N14d3HT6Jnw_hPAeIacUrigFfc1SAoVS75EF1ZzmAFLvkwUAVbnmkh-SoxDe05ULCgty8xKn1mLIoss8tpPBbKgjelv3GXoXrBszO2bYo4nexQ36ITV9PY0mncMxOejqPuDJTy7J2_3d6-oxXz8_PK1u17kppIy5QlRcNRoQJEUhGEDXGDSt4jUWmkksdaOYkl3biKJRDSsBWamlKCVPZbEk5_O7LkRbBWMjmo1x45i-VQkpRMFUQhcz2nr3MWGI1WCDwb6vR3RTqJhSEnjB_gEl1WWp_4aCCygYTfByhibNLHjsqq23Q-0_KwrV92IqlnK3mGTPZmsR8ZfblV_Jm4aS</recordid><startdate>199101</startdate><enddate>199101</enddate><creator>Gilligan, J.</creator><creator>Bourham, M.</creator><creator>Hankins, O.</creator><creator>Auciello, O.</creator><creator>Tallavarjula, S.</creator><creator>Mohanti, R.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>199101</creationdate><title>Studies to reduce material erosion in electrothermal launchers</title><author>Gilligan, J. ; Bourham, M. ; Hankins, O. ; Auciello, O. ; Tallavarjula, S. ; Mohanti, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-8ee848b90e061e55200fbcecd84ae3926e79b8286fdb53b8b270e279657646e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-)</topic><topic>Aluminum</topic><topic>BOUNDARY LAYERS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Conducting materials</topic><topic>Copper</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>Electrothermal launching</topic><topic>EROSION</topic><topic>HEAT FLUX</topic><topic>Inorganic materials</topic><topic>Insulation</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic materials</topic><topic>Magnetic shielding</topic><topic>MATERIALS TESTING</topic><topic>Metal-insulator structures</topic><topic>MULTI-CHANNEL ANALYZERS</topic><topic>OPTICALLY THICK PLASMA</topic><topic>PLASMA</topic><topic>PLASMA FLUID EQUATIONS</topic><topic>PLASMA GUNS</topic><topic>Plasma materials processing</topic><topic>PLASMA PRODUCTION</topic><topic>PLASMA SCRAPE-OFF LAYER</topic><topic>PLASMA SIMULATION</topic><topic>PULSE ANALYZERS</topic><topic>REACTOR COMPONENTS</topic><topic>SHIELDING</topic><topic>SIMULATION</topic><topic>SURFACES</topic><topic>TEMPERATURE RANGE</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>TESTING 700411 -- Inertial Confinement Devices-- (1992-)</topic><topic>THERMAL CYCLING</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilligan, J.</creatorcontrib><creatorcontrib>Bourham, M.</creatorcontrib><creatorcontrib>Hankins, O.</creatorcontrib><creatorcontrib>Auciello, O.</creatorcontrib><creatorcontrib>Tallavarjula, S.</creatorcontrib><creatorcontrib>Mohanti, R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilligan, J.</au><au>Bourham, M.</au><au>Hankins, O.</au><au>Auciello, O.</au><au>Tallavarjula, S.</au><au>Mohanti, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studies to reduce material erosion in electrothermal launchers</atitle><jtitle>IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TMAG</stitle><date>1991-01</date><risdate>1991</risdate><volume>27</volume><issue>1</issue><spage>476</spage><epage>481</epage><pages>476-481</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Plasma erosion processes on insulators and conductors, using the SIRENS electrothermal launcher, have verified the vapor shield concept. The energy transmission factor through the vapor shield was found to vary from 20% to 5% as the heat flux increases. Metals have strong axial erosion dependence, with an average erosion depth of 15-45 mu m/kJ for aluminium and 5-10 mu m/kJ for pure copper. Insulators have uniform ablation along the axial direction, with an average ablation depth of 10-14 mu m/kJ for Lexan. Aluminium has a higher erosion rate with an increase of energy input, while Lexan and pure copper have approximately equal erosion rates which are considerably less than that of aluminium. High-density graphite does not ablate at lower energies, and ablates only slightly at energies above 3 kJ (1-2 mu m/kJ), while molded dense electrographite ablates at a higher rate (1-3 mu m/kJ). Both types of graphite have considerably less ablation than other materials. Lexan and graphites showed greater evidence of the vapor shield effect than aluminium and copper, although there is tendency towards less erosion at higher values of heat fluxes. Multiple exposure of material surfaces demonstrated that insulators have better performance than metallic surfaces. The initial indications for the effect of the magnetic field applied parallel to the material surface revealed a threshold for the onset of the magnetic vapor shielding effect (above 5 T for Lexan).< ></abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/20.101079</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE Transactions on Magnetics (Institute of Electrical and Electronics Engineers); (United States), 1991-01, Vol.27 (1), p.476-481 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_101079 |
source | IEEE Electronic Library (IEL) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY 700430 -- Fusion Technology-- Magnet Coils & Fields-- (1992-) Aluminum BOUNDARY LAYERS COMPUTERIZED SIMULATION Conducting materials Copper ELECTRONIC EQUIPMENT Electrothermal launching EROSION HEAT FLUX Inorganic materials Insulation LAYERS MAGNETIC FIELDS Magnetic materials Magnetic shielding MATERIALS TESTING Metal-insulator structures MULTI-CHANNEL ANALYZERS OPTICALLY THICK PLASMA PLASMA PLASMA FLUID EQUATIONS PLASMA GUNS Plasma materials processing PLASMA PRODUCTION PLASMA SCRAPE-OFF LAYER PLASMA SIMULATION PULSE ANALYZERS REACTOR COMPONENTS SHIELDING SIMULATION SURFACES TEMPERATURE RANGE TEMPERATURE RANGE 0065-0273 K TESTING 700411 -- Inertial Confinement Devices-- (1992-) THERMAL CYCLING |
title | Studies to reduce material erosion in electrothermal launchers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studies%20to%20reduce%20material%20erosion%20in%20electrothermal%20launchers&rft.jtitle=IEEE%20Transactions%20on%20Magnetics%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Gilligan,%20J.&rft.date=1991-01&rft.volume=27&rft.issue=1&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.101079&rft_dat=%3Cproquest_RIE%3E28619779%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25450321&rft_id=info:pmid/&rft_ieee_id=101079&rfr_iscdi=true |