Multi-information Fusion Network for Mapping Gapless All-sky Land Surface Temperature Using Thermal Infrared and Reanalysis Data

Towards fully exploring multidisciplinary research topics under global warming, the spatiotemporal discontinuities of land surface temperature (LST) products due to cloud contamination still challenge such research topics. Data fusion that seeks the best compromise between multiple data sources play...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-04, p.1-1
Hauptverfasser: Zhang, Yong, Yang, Yingbao, Pan, Xin, Ding, Yuan, Hu, Jia, Dai, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume
creator Zhang, Yong
Yang, Yingbao
Pan, Xin
Ding, Yuan
Hu, Jia
Dai, Yang
description Towards fully exploring multidisciplinary research topics under global warming, the spatiotemporal discontinuities of land surface temperature (LST) products due to cloud contamination still challenge such research topics. Data fusion that seeks the best compromise between multiple data sources plays a key role in providing gapless LST data. However, most models only use information about the variation of LST at different times or the difference between different LST products without effectively combining the two pieces of information. With the rapid development of deep learning methods, powerful modeling capabilities can solve this problem. This article proposes a novel multi-information fusion network (MIFN) based on convolutional neural networks (CNNs) and attention mechanisms to map gapless all-sky LST, taking temporal-changing (TC) and data-differentiated (DD) information into consideration. Temporal normalization is used as a pre-processing step to match the time of Moderate Resolution Imaging Spectroradiometer (MODIS) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis fifth Generation (ERA5) LSTs. The MIFN extracts multiscale multi-temporal TC and DD features by network constraints. Then, the weights of the target LST features reconstructed by TC and DD features are assigned through an attention mechanism to fuse them reasonably. Finally, we design a loss function that combines TC, DD, and LST reconstruction to improve the accuracy of LST prediction further. We performed comprehensive data experiments to validate the performance of the new method. Our technique is more advantageous in generating MODIS-like LSTs than four state-of-the-art methods and two CNN models using a single piece of information.
doi_str_mv 10.1109/TGRS.2023.3269622
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10107481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107481</ieee_id><sourcerecordid>10107481</sourcerecordid><originalsourceid>FETCH-ieee_primary_101074813</originalsourceid><addsrcrecordid>eNqFjD1PwzAQQD2ARPn4AUgM9wcSfE5JmxEBbZEoQxvm6kQvYOo4ls8RysZPp5HYmd7wnp5S16hzRF3d1svNNjfaFHlhyqo05kRNNFZlZuaVOVPnIl9a4_QOZxP1s-5dspn1TRdbSrbzsOhlxCun7y4e4ChgTSFY_wFLCo5F4N65TA4DvJDfw7aPDb0z1NwGjpT6yPAmY15_8nHq4Nk3kSLvYcw3TJ7cIFbgkRJdqtOGnPDVHy_UzeKpflhllpl3IdqW4rBDjXo2nWPxj_4FYDJP0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-information Fusion Network for Mapping Gapless All-sky Land Surface Temperature Using Thermal Infrared and Reanalysis Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yong ; Yang, Yingbao ; Pan, Xin ; Ding, Yuan ; Hu, Jia ; Dai, Yang</creator><creatorcontrib>Zhang, Yong ; Yang, Yingbao ; Pan, Xin ; Ding, Yuan ; Hu, Jia ; Dai, Yang</creatorcontrib><description>Towards fully exploring multidisciplinary research topics under global warming, the spatiotemporal discontinuities of land surface temperature (LST) products due to cloud contamination still challenge such research topics. Data fusion that seeks the best compromise between multiple data sources plays a key role in providing gapless LST data. However, most models only use information about the variation of LST at different times or the difference between different LST products without effectively combining the two pieces of information. With the rapid development of deep learning methods, powerful modeling capabilities can solve this problem. This article proposes a novel multi-information fusion network (MIFN) based on convolutional neural networks (CNNs) and attention mechanisms to map gapless all-sky LST, taking temporal-changing (TC) and data-differentiated (DD) information into consideration. Temporal normalization is used as a pre-processing step to match the time of Moderate Resolution Imaging Spectroradiometer (MODIS) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis fifth Generation (ERA5) LSTs. The MIFN extracts multiscale multi-temporal TC and DD features by network constraints. Then, the weights of the target LST features reconstructed by TC and DD features are assigned through an attention mechanism to fuse them reasonably. Finally, we design a loss function that combines TC, DD, and LST reconstruction to improve the accuracy of LST prediction further. We performed comprehensive data experiments to validate the performance of the new method. Our technique is more advantageous in generating MODIS-like LSTs than four state-of-the-art methods and two CNN models using a single piece of information.</description><identifier>ISSN: 0196-2892</identifier><identifier>DOI: 10.1109/TGRS.2023.3269622</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>All-sky ; Clouds ; deep learning ; Feature extraction ; Fusion ; Image reconstruction ; Land surface temperature ; MODIS ; Multi-information ; Temperature distribution ; Temperature sensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-04, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4266-269X ; 0000-0003-3176-8218 ; 0000-0002-3092-5683 ; 0000-0002-5864-8112 ; 0000-0001-9802-4606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10107481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Yang, Yingbao</creatorcontrib><creatorcontrib>Pan, Xin</creatorcontrib><creatorcontrib>Ding, Yuan</creatorcontrib><creatorcontrib>Hu, Jia</creatorcontrib><creatorcontrib>Dai, Yang</creatorcontrib><title>Multi-information Fusion Network for Mapping Gapless All-sky Land Surface Temperature Using Thermal Infrared and Reanalysis Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Towards fully exploring multidisciplinary research topics under global warming, the spatiotemporal discontinuities of land surface temperature (LST) products due to cloud contamination still challenge such research topics. Data fusion that seeks the best compromise between multiple data sources plays a key role in providing gapless LST data. However, most models only use information about the variation of LST at different times or the difference between different LST products without effectively combining the two pieces of information. With the rapid development of deep learning methods, powerful modeling capabilities can solve this problem. This article proposes a novel multi-information fusion network (MIFN) based on convolutional neural networks (CNNs) and attention mechanisms to map gapless all-sky LST, taking temporal-changing (TC) and data-differentiated (DD) information into consideration. Temporal normalization is used as a pre-processing step to match the time of Moderate Resolution Imaging Spectroradiometer (MODIS) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis fifth Generation (ERA5) LSTs. The MIFN extracts multiscale multi-temporal TC and DD features by network constraints. Then, the weights of the target LST features reconstructed by TC and DD features are assigned through an attention mechanism to fuse them reasonably. Finally, we design a loss function that combines TC, DD, and LST reconstruction to improve the accuracy of LST prediction further. We performed comprehensive data experiments to validate the performance of the new method. Our technique is more advantageous in generating MODIS-like LSTs than four state-of-the-art methods and two CNN models using a single piece of information.</description><subject>All-sky</subject><subject>Clouds</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Fusion</subject><subject>Image reconstruction</subject><subject>Land surface temperature</subject><subject>MODIS</subject><subject>Multi-information</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><issn>0196-2892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjD1PwzAQQD2ARPn4AUgM9wcSfE5JmxEBbZEoQxvm6kQvYOo4ls8RysZPp5HYmd7wnp5S16hzRF3d1svNNjfaFHlhyqo05kRNNFZlZuaVOVPnIl9a4_QOZxP1s-5dspn1TRdbSrbzsOhlxCun7y4e4ChgTSFY_wFLCo5F4N65TA4DvJDfw7aPDb0z1NwGjpT6yPAmY15_8nHq4Nk3kSLvYcw3TJ7cIFbgkRJdqtOGnPDVHy_UzeKpflhllpl3IdqW4rBDjXo2nWPxj_4FYDJP0g</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Zhang, Yong</creator><creator>Yang, Yingbao</creator><creator>Pan, Xin</creator><creator>Ding, Yuan</creator><creator>Hu, Jia</creator><creator>Dai, Yang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4266-269X</orcidid><orcidid>https://orcid.org/0000-0003-3176-8218</orcidid><orcidid>https://orcid.org/0000-0002-3092-5683</orcidid><orcidid>https://orcid.org/0000-0002-5864-8112</orcidid><orcidid>https://orcid.org/0000-0001-9802-4606</orcidid></search><sort><creationdate>20230421</creationdate><title>Multi-information Fusion Network for Mapping Gapless All-sky Land Surface Temperature Using Thermal Infrared and Reanalysis Data</title><author>Zhang, Yong ; Yang, Yingbao ; Pan, Xin ; Ding, Yuan ; Hu, Jia ; Dai, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101074813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>All-sky</topic><topic>Clouds</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Fusion</topic><topic>Image reconstruction</topic><topic>Land surface temperature</topic><topic>MODIS</topic><topic>Multi-information</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Yang, Yingbao</creatorcontrib><creatorcontrib>Pan, Xin</creatorcontrib><creatorcontrib>Ding, Yuan</creatorcontrib><creatorcontrib>Hu, Jia</creatorcontrib><creatorcontrib>Dai, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yong</au><au>Yang, Yingbao</au><au>Pan, Xin</au><au>Ding, Yuan</au><au>Hu, Jia</au><au>Dai, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-information Fusion Network for Mapping Gapless All-sky Land Surface Temperature Using Thermal Infrared and Reanalysis Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-04-21</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><coden>IGRSD2</coden><abstract>Towards fully exploring multidisciplinary research topics under global warming, the spatiotemporal discontinuities of land surface temperature (LST) products due to cloud contamination still challenge such research topics. Data fusion that seeks the best compromise between multiple data sources plays a key role in providing gapless LST data. However, most models only use information about the variation of LST at different times or the difference between different LST products without effectively combining the two pieces of information. With the rapid development of deep learning methods, powerful modeling capabilities can solve this problem. This article proposes a novel multi-information fusion network (MIFN) based on convolutional neural networks (CNNs) and attention mechanisms to map gapless all-sky LST, taking temporal-changing (TC) and data-differentiated (DD) information into consideration. Temporal normalization is used as a pre-processing step to match the time of Moderate Resolution Imaging Spectroradiometer (MODIS) and European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis fifth Generation (ERA5) LSTs. The MIFN extracts multiscale multi-temporal TC and DD features by network constraints. Then, the weights of the target LST features reconstructed by TC and DD features are assigned through an attention mechanism to fuse them reasonably. Finally, we design a loss function that combines TC, DD, and LST reconstruction to improve the accuracy of LST prediction further. We performed comprehensive data experiments to validate the performance of the new method. Our technique is more advantageous in generating MODIS-like LSTs than four state-of-the-art methods and two CNN models using a single piece of information.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2023.3269622</doi><orcidid>https://orcid.org/0000-0002-4266-269X</orcidid><orcidid>https://orcid.org/0000-0003-3176-8218</orcidid><orcidid>https://orcid.org/0000-0002-3092-5683</orcidid><orcidid>https://orcid.org/0000-0002-5864-8112</orcidid><orcidid>https://orcid.org/0000-0001-9802-4606</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-04, p.1-1
issn 0196-2892
language eng
recordid cdi_ieee_primary_10107481
source IEEE Electronic Library (IEL)
subjects All-sky
Clouds
deep learning
Feature extraction
Fusion
Image reconstruction
Land surface temperature
MODIS
Multi-information
Temperature distribution
Temperature sensors
title Multi-information Fusion Network for Mapping Gapless All-sky Land Surface Temperature Using Thermal Infrared and Reanalysis Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-information%20Fusion%20Network%20for%20Mapping%20Gapless%20All-sky%20Land%20Surface%20Temperature%20Using%20Thermal%20Infrared%20and%20Reanalysis%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Yong&rft.date=2023-04-21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3269622&rft_dat=%3Cieee_RIE%3E10107481%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10107481&rfr_iscdi=true