A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes
The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-0 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 70 |
creator | Garcia-Sanchez, S. Rengel, R. Perez, S. Gonzalez, T. Mateos, J. |
description | The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages. |
doi_str_mv | 10.1109/TED.2023.3265625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10105182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10105182</ieee_id><sourcerecordid>2819499005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-210fbe2c026813ae9075e7fd5fda3f220a9a5fef4e4fb97478cbb70c412dbde03</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7xM4lHlJa2UnlIlNlykuvi0trBSYfy60lpB6ajK33nXOlD6JaSEaVEPSwn4xEjjI84S2XK5BkaUCmzRKUiPUcDQmieKJ7zS3TVtuv-TIVgA_T1iMcADV6Aid75VfIcfAe4MHETcBG2pfNQ47cItas6FzwOFr-7GpKJtVB1eL5tzCGCdz_mD3Aez9zqc7PH49D03al5wWMXamiv0YU1mxZuTjlEH0-TZTFLFq_TefG4SCqWZ13CKLElsIqwNKfcgCKZhMzW0taGW8aIUUZasAKELVUmsrwqy4xUgrK6rIHwIbo_7jYxfO-g7fQ67KLvX2qWUyWUIkT2FDlSVQxtG8HqJrqtiXtNiT4o1b1SfVCqT0r7yt2x4gDgH06JpDnjv8D8ceI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819499005</pqid></control><display><type>article</type><title>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia-Sanchez, S. ; Rengel, R. ; Perez, S. ; Gonzalez, T. ; Mateos, J.</creator><creatorcontrib>Garcia-Sanchez, S. ; Rengel, R. ; Perez, S. ; Gonzalez, T. ; Mateos, J.</creatorcontrib><description>The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3265625</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Artificial intelligence (AI) ; Breakdown ; Buffers ; Computer simulation ; Deep learning ; Dielectrics ; Diodes ; doped GaN ; Doping ; Electric fields ; electronic transport ; Gallium nitrides ; Gunn diodes ; High temperature ; Impact ionization ; Ionization ; Leakage current ; Monte Carlo (MC) simulations ; Neural networks ; Oscillations ; Oscillators ; Permittivity ; Semiconductor diodes ; terahertz (THz) generation</subject><ispartof>IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-210fbe2c026813ae9075e7fd5fda3f220a9a5fef4e4fb97478cbb70c412dbde03</cites><orcidid>0000-0003-4976-2244 ; 0000-0001-8061-4835 ; 0000-0002-3706-3211 ; 0000-0003-4041-7145 ; 0000-0002-1494-0795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10105182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10105182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia-Sanchez, S.</creatorcontrib><creatorcontrib>Rengel, R.</creatorcontrib><creatorcontrib>Perez, S.</creatorcontrib><creatorcontrib>Gonzalez, T.</creatorcontrib><creatorcontrib>Mateos, J.</creatorcontrib><title>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.</description><subject>Anodes</subject><subject>Artificial intelligence (AI)</subject><subject>Breakdown</subject><subject>Buffers</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Dielectrics</subject><subject>Diodes</subject><subject>doped GaN</subject><subject>Doping</subject><subject>Electric fields</subject><subject>electronic transport</subject><subject>Gallium nitrides</subject><subject>Gunn diodes</subject><subject>High temperature</subject><subject>Impact ionization</subject><subject>Ionization</subject><subject>Leakage current</subject><subject>Monte Carlo (MC) simulations</subject><subject>Neural networks</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Permittivity</subject><subject>Semiconductor diodes</subject><subject>terahertz (THz) generation</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7xM4lHlJa2UnlIlNlykuvi0trBSYfy60lpB6ajK33nXOlD6JaSEaVEPSwn4xEjjI84S2XK5BkaUCmzRKUiPUcDQmieKJ7zS3TVtuv-TIVgA_T1iMcADV6Aid75VfIcfAe4MHETcBG2pfNQ47cItas6FzwOFr-7GpKJtVB1eL5tzCGCdz_mD3Aez9zqc7PH49D03al5wWMXamiv0YU1mxZuTjlEH0-TZTFLFq_TefG4SCqWZ13CKLElsIqwNKfcgCKZhMzW0taGW8aIUUZasAKELVUmsrwqy4xUgrK6rIHwIbo_7jYxfO-g7fQ67KLvX2qWUyWUIkT2FDlSVQxtG8HqJrqtiXtNiT4o1b1SfVCqT0r7yt2x4gDgH06JpDnjv8D8ceI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Garcia-Sanchez, S.</creator><creator>Rengel, R.</creator><creator>Perez, S.</creator><creator>Gonzalez, T.</creator><creator>Mateos, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4976-2244</orcidid><orcidid>https://orcid.org/0000-0001-8061-4835</orcidid><orcidid>https://orcid.org/0000-0002-3706-3211</orcidid><orcidid>https://orcid.org/0000-0003-4041-7145</orcidid><orcidid>https://orcid.org/0000-0002-1494-0795</orcidid></search><sort><creationdate>20230601</creationdate><title>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</title><author>Garcia-Sanchez, S. ; Rengel, R. ; Perez, S. ; Gonzalez, T. ; Mateos, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-210fbe2c026813ae9075e7fd5fda3f220a9a5fef4e4fb97478cbb70c412dbde03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Artificial intelligence (AI)</topic><topic>Breakdown</topic><topic>Buffers</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Dielectrics</topic><topic>Diodes</topic><topic>doped GaN</topic><topic>Doping</topic><topic>Electric fields</topic><topic>electronic transport</topic><topic>Gallium nitrides</topic><topic>Gunn diodes</topic><topic>High temperature</topic><topic>Impact ionization</topic><topic>Ionization</topic><topic>Leakage current</topic><topic>Monte Carlo (MC) simulations</topic><topic>Neural networks</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Permittivity</topic><topic>Semiconductor diodes</topic><topic>terahertz (THz) generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Sanchez, S.</creatorcontrib><creatorcontrib>Rengel, R.</creatorcontrib><creatorcontrib>Perez, S.</creatorcontrib><creatorcontrib>Gonzalez, T.</creatorcontrib><creatorcontrib>Mateos, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Sanchez, S.</au><au>Rengel, R.</au><au>Perez, S.</au><au>Gonzalez, T.</au><au>Mateos, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>0</epage><pages>1-0</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3265625</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0003-4976-2244</orcidid><orcidid>https://orcid.org/0000-0001-8061-4835</orcidid><orcidid>https://orcid.org/0000-0002-3706-3211</orcidid><orcidid>https://orcid.org/0000-0003-4041-7145</orcidid><orcidid>https://orcid.org/0000-0002-1494-0795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_10105182 |
source | IEEE Electronic Library (IEL) |
subjects | Anodes Artificial intelligence (AI) Breakdown Buffers Computer simulation Deep learning Dielectrics Diodes doped GaN Doping Electric fields electronic transport Gallium nitrides Gunn diodes High temperature Impact ionization Ionization Leakage current Monte Carlo (MC) simulations Neural networks Oscillations Oscillators Permittivity Semiconductor diodes terahertz (THz) generation |
title | A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Monte%20Carlo%20Combined%20Prediction%20of%20Side-Effect%20Impact%20Ionization%20in%20Highly%20Doped%20GaN%20Diodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Garcia-Sanchez,%20S.&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3265625&rft_dat=%3Cproquest_RIE%3E2819499005%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819499005&rft_id=info:pmid/&rft_ieee_id=10105182&rfr_iscdi=true |