A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes

The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-06, Vol.70 (6), p.1-0
Hauptverfasser: Garcia-Sanchez, S., Rengel, R., Perez, S., Gonzalez, T., Mateos, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 0
container_issue 6
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Garcia-Sanchez, S.
Rengel, R.
Perez, S.
Gonzalez, T.
Mateos, J.
description The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.
doi_str_mv 10.1109/TED.2023.3265625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10105182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10105182</ieee_id><sourcerecordid>2819499005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-210fbe2c026813ae9075e7fd5fda3f220a9a5fef4e4fb97478cbb70c412dbde03</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7xM4lHlJa2UnlIlNlykuvi0trBSYfy60lpB6ajK33nXOlD6JaSEaVEPSwn4xEjjI84S2XK5BkaUCmzRKUiPUcDQmieKJ7zS3TVtuv-TIVgA_T1iMcADV6Aid75VfIcfAe4MHETcBG2pfNQ47cItas6FzwOFr-7GpKJtVB1eL5tzCGCdz_mD3Aez9zqc7PH49D03al5wWMXamiv0YU1mxZuTjlEH0-TZTFLFq_TefG4SCqWZ13CKLElsIqwNKfcgCKZhMzW0taGW8aIUUZasAKELVUmsrwqy4xUgrK6rIHwIbo_7jYxfO-g7fQ67KLvX2qWUyWUIkT2FDlSVQxtG8HqJrqtiXtNiT4o1b1SfVCqT0r7yt2x4gDgH06JpDnjv8D8ceI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819499005</pqid></control><display><type>article</type><title>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia-Sanchez, S. ; Rengel, R. ; Perez, S. ; Gonzalez, T. ; Mateos, J.</creator><creatorcontrib>Garcia-Sanchez, S. ; Rengel, R. ; Perez, S. ; Gonzalez, T. ; Mateos, J.</creatorcontrib><description>The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3265625</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Artificial intelligence (AI) ; Breakdown ; Buffers ; Computer simulation ; Deep learning ; Dielectrics ; Diodes ; doped GaN ; Doping ; Electric fields ; electronic transport ; Gallium nitrides ; Gunn diodes ; High temperature ; Impact ionization ; Ionization ; Leakage current ; Monte Carlo (MC) simulations ; Neural networks ; Oscillations ; Oscillators ; Permittivity ; Semiconductor diodes ; terahertz (THz) generation</subject><ispartof>IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-210fbe2c026813ae9075e7fd5fda3f220a9a5fef4e4fb97478cbb70c412dbde03</cites><orcidid>0000-0003-4976-2244 ; 0000-0001-8061-4835 ; 0000-0002-3706-3211 ; 0000-0003-4041-7145 ; 0000-0002-1494-0795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10105182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10105182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia-Sanchez, S.</creatorcontrib><creatorcontrib>Rengel, R.</creatorcontrib><creatorcontrib>Perez, S.</creatorcontrib><creatorcontrib>Gonzalez, T.</creatorcontrib><creatorcontrib>Mateos, J.</creatorcontrib><title>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.</description><subject>Anodes</subject><subject>Artificial intelligence (AI)</subject><subject>Breakdown</subject><subject>Buffers</subject><subject>Computer simulation</subject><subject>Deep learning</subject><subject>Dielectrics</subject><subject>Diodes</subject><subject>doped GaN</subject><subject>Doping</subject><subject>Electric fields</subject><subject>electronic transport</subject><subject>Gallium nitrides</subject><subject>Gunn diodes</subject><subject>High temperature</subject><subject>Impact ionization</subject><subject>Ionization</subject><subject>Leakage current</subject><subject>Monte Carlo (MC) simulations</subject><subject>Neural networks</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Permittivity</subject><subject>Semiconductor diodes</subject><subject>terahertz (THz) generation</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7xM4lHlJa2UnlIlNlykuvi0trBSYfy60lpB6ajK33nXOlD6JaSEaVEPSwn4xEjjI84S2XK5BkaUCmzRKUiPUcDQmieKJ7zS3TVtuv-TIVgA_T1iMcADV6Aid75VfIcfAe4MHETcBG2pfNQ47cItas6FzwOFr-7GpKJtVB1eL5tzCGCdz_mD3Aez9zqc7PH49D03al5wWMXamiv0YU1mxZuTjlEH0-TZTFLFq_TefG4SCqWZ13CKLElsIqwNKfcgCKZhMzW0taGW8aIUUZasAKELVUmsrwqy4xUgrK6rIHwIbo_7jYxfO-g7fQ67KLvX2qWUyWUIkT2FDlSVQxtG8HqJrqtiXtNiT4o1b1SfVCqT0r7yt2x4gDgH06JpDnjv8D8ceI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Garcia-Sanchez, S.</creator><creator>Rengel, R.</creator><creator>Perez, S.</creator><creator>Gonzalez, T.</creator><creator>Mateos, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4976-2244</orcidid><orcidid>https://orcid.org/0000-0001-8061-4835</orcidid><orcidid>https://orcid.org/0000-0002-3706-3211</orcidid><orcidid>https://orcid.org/0000-0003-4041-7145</orcidid><orcidid>https://orcid.org/0000-0002-1494-0795</orcidid></search><sort><creationdate>20230601</creationdate><title>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</title><author>Garcia-Sanchez, S. ; Rengel, R. ; Perez, S. ; Gonzalez, T. ; Mateos, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-210fbe2c026813ae9075e7fd5fda3f220a9a5fef4e4fb97478cbb70c412dbde03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Artificial intelligence (AI)</topic><topic>Breakdown</topic><topic>Buffers</topic><topic>Computer simulation</topic><topic>Deep learning</topic><topic>Dielectrics</topic><topic>Diodes</topic><topic>doped GaN</topic><topic>Doping</topic><topic>Electric fields</topic><topic>electronic transport</topic><topic>Gallium nitrides</topic><topic>Gunn diodes</topic><topic>High temperature</topic><topic>Impact ionization</topic><topic>Ionization</topic><topic>Leakage current</topic><topic>Monte Carlo (MC) simulations</topic><topic>Neural networks</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Permittivity</topic><topic>Semiconductor diodes</topic><topic>terahertz (THz) generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Sanchez, S.</creatorcontrib><creatorcontrib>Rengel, R.</creatorcontrib><creatorcontrib>Perez, S.</creatorcontrib><creatorcontrib>Gonzalez, T.</creatorcontrib><creatorcontrib>Mateos, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Sanchez, S.</au><au>Rengel, R.</au><au>Perez, S.</au><au>Gonzalez, T.</au><au>Mateos, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>0</epage><pages>1-0</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>The existence of leakage current pathways leading to the appearance of impact ionization and the potential device breakdown in planar Gunn GaN diodes is analyzed by means of a combined Monte Carlo (MC)-deep learning approach. Front-view (lateral) MC simulations of the devices show the appearance of a high-field hotspot at the anode corner of the etched region, just at the boundaries between the dielectric, the GaN-doped layer, and the buffer. Thus, if the isolation created by the etched trenches is not complete, a relevant hot carrier population within the buffer is observed at sufficiently high applied voltages, provoking the appearance of a very significant number of impact ionizations and the consequent avalanche process before the onset of Gunn oscillations. A neural network trained from MC simulations allows predicting with extremely good precision the breakdown voltage of the diodes depending on the doping of the GaN active layer, the permittivity of the isolating dielectric, and the lattice temperature. Low doping, high temperature, and high permittivity provide larger operational voltages, which implies a tradeoff with the conditions required to achieve terahertz (THz) Gunn oscillations at low voltages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3265625</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0003-4976-2244</orcidid><orcidid>https://orcid.org/0000-0001-8061-4835</orcidid><orcidid>https://orcid.org/0000-0002-3706-3211</orcidid><orcidid>https://orcid.org/0000-0003-4041-7145</orcidid><orcidid>https://orcid.org/0000-0002-1494-0795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-06, Vol.70 (6), p.1-0
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_10105182
source IEEE Electronic Library (IEL)
subjects Anodes
Artificial intelligence (AI)
Breakdown
Buffers
Computer simulation
Deep learning
Dielectrics
Diodes
doped GaN
Doping
Electric fields
electronic transport
Gallium nitrides
Gunn diodes
High temperature
Impact ionization
Ionization
Leakage current
Monte Carlo (MC) simulations
Neural networks
Oscillations
Oscillators
Permittivity
Semiconductor diodes
terahertz (THz) generation
title A Deep Learning-Monte Carlo Combined Prediction of Side-Effect Impact Ionization in Highly Doped GaN Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Monte%20Carlo%20Combined%20Prediction%20of%20Side-Effect%20Impact%20Ionization%20in%20Highly%20Doped%20GaN%20Diodes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Garcia-Sanchez,%20S.&rft.date=2023-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=0&rft.pages=1-0&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3265625&rft_dat=%3Cproquest_RIE%3E2819499005%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2819499005&rft_id=info:pmid/&rft_ieee_id=10105182&rfr_iscdi=true