Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy
We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study i...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Kraemer, Frank Alexander Asad, Hafiz Areeb Bach, Kerstin Renner, Christian |
description | We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions. |
doi_str_mv | 10.1109/ACCESS.2023.3267810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10103690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10103690</ieee_id><doaj_id>oai_doaj_org_article_02c83bd437be4c11b15fbd5aaf59cc4a</doaj_id><sourcerecordid>2806220590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</originalsourceid><addsrcrecordid>eNpNUVFr2zAQNqWDlSy_oHsw7NnZSbYs6zFkaRvIaCDrszhLp0TBtTrZGeTfT5nL6L3c8d33fXfwZdk9gwVjoL4vV6v1fr_gwMtFyWvZMLjJ7jirVVGKsr79MH_O5sNwglRNgoS8y3bPfed7yn-iOV77ljD2vj_kLsScFT_wUiyPhDbfRbLejD70eXD5prchEXbHMIY_oRvRm3zdUzxcvmSfHHYDzd_7LHt5WP9aPRXb58fNarktTAVqLNCicFJhKw2rlHJogYF1RthWgLOCkWoRHAcDVlIlmCSSSUHGNiCFLGfZZvK1AU_6LfpXjBcd0Ot_QIgHjXH0piMN3DRla6tStlQZxlomXGsFohPKmAqT17fJ6y2G32caRn0K59in9zVvoOYchILEKieWiWEYIrn_VxnoaxJ6SkJfk9DvSSTV10nlieiDIq3qZPoX6B2ExA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806220590</pqid></control><display><type>article</type><title>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kraemer, Frank Alexander ; Asad, Hafiz Areeb ; Bach, Kerstin ; Renner, Christian</creator><creatorcontrib>Kraemer, Frank Alexander ; Asad, Hafiz Areeb ; Bach, Kerstin ; Renner, Christian</creatorcontrib><description>We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3267810</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Energy harvesting ; Energy management ; energy predictions ; Errors ; Lighting ; Machine learning ; Photovoltaic systems ; Predictions ; Predictive models ; Solar power generation ; Task analysis ; Training ; Weather forecasting</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</citedby><cites>FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</cites><orcidid>0000-0002-8657-5379 ; 0000-0002-4256-7676 ; 0000-0002-6936-6444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10103690$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kraemer, Frank Alexander</creatorcontrib><creatorcontrib>Asad, Hafiz Areeb</creatorcontrib><creatorcontrib>Bach, Kerstin</creatorcontrib><creatorcontrib>Renner, Christian</creatorcontrib><title>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</title><title>IEEE access</title><addtitle>Access</addtitle><description>We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.</description><subject>Algorithms</subject><subject>Energy harvesting</subject><subject>Energy management</subject><subject>energy predictions</subject><subject>Errors</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>Photovoltaic systems</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Solar power generation</subject><subject>Task analysis</subject><subject>Training</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVFr2zAQNqWDlSy_oHsw7NnZSbYs6zFkaRvIaCDrszhLp0TBtTrZGeTfT5nL6L3c8d33fXfwZdk9gwVjoL4vV6v1fr_gwMtFyWvZMLjJ7jirVVGKsr79MH_O5sNwglRNgoS8y3bPfed7yn-iOV77ljD2vj_kLsScFT_wUiyPhDbfRbLejD70eXD5prchEXbHMIY_oRvRm3zdUzxcvmSfHHYDzd_7LHt5WP9aPRXb58fNarktTAVqLNCicFJhKw2rlHJogYF1RthWgLOCkWoRHAcDVlIlmCSSSUHGNiCFLGfZZvK1AU_6LfpXjBcd0Ot_QIgHjXH0piMN3DRla6tStlQZxlomXGsFohPKmAqT17fJ6y2G32caRn0K59in9zVvoOYchILEKieWiWEYIrn_VxnoaxJ6SkJfk9DvSSTV10nlieiDIq3qZPoX6B2ExA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kraemer, Frank Alexander</creator><creator>Asad, Hafiz Areeb</creator><creator>Bach, Kerstin</creator><creator>Renner, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8657-5379</orcidid><orcidid>https://orcid.org/0000-0002-4256-7676</orcidid><orcidid>https://orcid.org/0000-0002-6936-6444</orcidid></search><sort><creationdate>20230101</creationdate><title>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</title><author>Kraemer, Frank Alexander ; Asad, Hafiz Areeb ; Bach, Kerstin ; Renner, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Energy harvesting</topic><topic>Energy management</topic><topic>energy predictions</topic><topic>Errors</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>Photovoltaic systems</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Solar power generation</topic><topic>Task analysis</topic><topic>Training</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraemer, Frank Alexander</creatorcontrib><creatorcontrib>Asad, Hafiz Areeb</creatorcontrib><creatorcontrib>Bach, Kerstin</creatorcontrib><creatorcontrib>Renner, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraemer, Frank Alexander</au><au>Asad, Hafiz Areeb</au><au>Bach, Kerstin</au><au>Renner, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3267810</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8657-5379</orcidid><orcidid>https://orcid.org/0000-0002-4256-7676</orcidid><orcidid>https://orcid.org/0000-0002-6936-6444</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10103690 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Energy harvesting Energy management energy predictions Errors Lighting Machine learning Photovoltaic systems Predictions Predictive models Solar power generation Task analysis Training Weather forecasting |
title | Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Machine%20Learning%20for%201-Day-Ahead%20Prediction%20of%20Indoor%20Photovoltaic%20Energy&rft.jtitle=IEEE%20access&rft.au=Kraemer,%20Frank%20Alexander&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3267810&rft_dat=%3Cproquest_ieee_%3E2806220590%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806220590&rft_id=info:pmid/&rft_ieee_id=10103690&rft_doaj_id=oai_doaj_org_article_02c83bd437be4c11b15fbd5aaf59cc4a&rfr_iscdi=true |