Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy

We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Kraemer, Frank Alexander, Asad, Hafiz Areeb, Bach, Kerstin, Renner, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Kraemer, Frank Alexander
Asad, Hafiz Areeb
Bach, Kerstin
Renner, Christian
description We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.
doi_str_mv 10.1109/ACCESS.2023.3267810
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10103690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10103690</ieee_id><doaj_id>oai_doaj_org_article_02c83bd437be4c11b15fbd5aaf59cc4a</doaj_id><sourcerecordid>2806220590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</originalsourceid><addsrcrecordid>eNpNUVFr2zAQNqWDlSy_oHsw7NnZSbYs6zFkaRvIaCDrszhLp0TBtTrZGeTfT5nL6L3c8d33fXfwZdk9gwVjoL4vV6v1fr_gwMtFyWvZMLjJ7jirVVGKsr79MH_O5sNwglRNgoS8y3bPfed7yn-iOV77ljD2vj_kLsScFT_wUiyPhDbfRbLejD70eXD5prchEXbHMIY_oRvRm3zdUzxcvmSfHHYDzd_7LHt5WP9aPRXb58fNarktTAVqLNCicFJhKw2rlHJogYF1RthWgLOCkWoRHAcDVlIlmCSSSUHGNiCFLGfZZvK1AU_6LfpXjBcd0Ot_QIgHjXH0piMN3DRla6tStlQZxlomXGsFohPKmAqT17fJ6y2G32caRn0K59in9zVvoOYchILEKieWiWEYIrn_VxnoaxJ6SkJfk9DvSSTV10nlieiDIq3qZPoX6B2ExA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806220590</pqid></control><display><type>article</type><title>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kraemer, Frank Alexander ; Asad, Hafiz Areeb ; Bach, Kerstin ; Renner, Christian</creator><creatorcontrib>Kraemer, Frank Alexander ; Asad, Hafiz Areeb ; Bach, Kerstin ; Renner, Christian</creatorcontrib><description>We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3267810</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Energy harvesting ; Energy management ; energy predictions ; Errors ; Lighting ; Machine learning ; Photovoltaic systems ; Predictions ; Predictive models ; Solar power generation ; Task analysis ; Training ; Weather forecasting</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</citedby><cites>FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</cites><orcidid>0000-0002-8657-5379 ; 0000-0002-4256-7676 ; 0000-0002-6936-6444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10103690$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kraemer, Frank Alexander</creatorcontrib><creatorcontrib>Asad, Hafiz Areeb</creatorcontrib><creatorcontrib>Bach, Kerstin</creatorcontrib><creatorcontrib>Renner, Christian</creatorcontrib><title>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</title><title>IEEE access</title><addtitle>Access</addtitle><description>We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.</description><subject>Algorithms</subject><subject>Energy harvesting</subject><subject>Energy management</subject><subject>energy predictions</subject><subject>Errors</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>Photovoltaic systems</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Solar power generation</subject><subject>Task analysis</subject><subject>Training</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVFr2zAQNqWDlSy_oHsw7NnZSbYs6zFkaRvIaCDrszhLp0TBtTrZGeTfT5nL6L3c8d33fXfwZdk9gwVjoL4vV6v1fr_gwMtFyWvZMLjJ7jirVVGKsr79MH_O5sNwglRNgoS8y3bPfed7yn-iOV77ljD2vj_kLsScFT_wUiyPhDbfRbLejD70eXD5prchEXbHMIY_oRvRm3zdUzxcvmSfHHYDzd_7LHt5WP9aPRXb58fNarktTAVqLNCicFJhKw2rlHJogYF1RthWgLOCkWoRHAcDVlIlmCSSSUHGNiCFLGfZZvK1AU_6LfpXjBcd0Ot_QIgHjXH0piMN3DRla6tStlQZxlomXGsFohPKmAqT17fJ6y2G32caRn0K59in9zVvoOYchILEKieWiWEYIrn_VxnoaxJ6SkJfk9DvSSTV10nlieiDIq3qZPoX6B2ExA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kraemer, Frank Alexander</creator><creator>Asad, Hafiz Areeb</creator><creator>Bach, Kerstin</creator><creator>Renner, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8657-5379</orcidid><orcidid>https://orcid.org/0000-0002-4256-7676</orcidid><orcidid>https://orcid.org/0000-0002-6936-6444</orcidid></search><sort><creationdate>20230101</creationdate><title>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</title><author>Kraemer, Frank Alexander ; Asad, Hafiz Areeb ; Bach, Kerstin ; Renner, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ada5f79ab7c1499fad010dfc5db50fd51e9ba0f20c0d7e4517ee75f7ecd807573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Energy harvesting</topic><topic>Energy management</topic><topic>energy predictions</topic><topic>Errors</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>Photovoltaic systems</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Solar power generation</topic><topic>Task analysis</topic><topic>Training</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kraemer, Frank Alexander</creatorcontrib><creatorcontrib>Asad, Hafiz Areeb</creatorcontrib><creatorcontrib>Bach, Kerstin</creatorcontrib><creatorcontrib>Renner, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kraemer, Frank Alexander</au><au>Asad, Hafiz Areeb</au><au>Bach, Kerstin</au><au>Renner, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting opportunities more strategically, for which they require more accurate energy intake predictions. Our study is based on a data set covering over 3 years, for which we simulate online machine learning algorithms with different amounts of training data and input features. Our results show that relatively simple machine learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources of errors to understand the potential of indoor photovoltaic energy harvesting predictions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3267810</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8657-5379</orcidid><orcidid>https://orcid.org/0000-0002-4256-7676</orcidid><orcidid>https://orcid.org/0000-0002-6936-6444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10103690
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Energy harvesting
Energy management
energy predictions
Errors
Lighting
Machine learning
Photovoltaic systems
Predictions
Predictive models
Solar power generation
Task analysis
Training
Weather forecasting
title Online Machine Learning for 1-Day-Ahead Prediction of Indoor Photovoltaic Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Machine%20Learning%20for%201-Day-Ahead%20Prediction%20of%20Indoor%20Photovoltaic%20Energy&rft.jtitle=IEEE%20access&rft.au=Kraemer,%20Frank%20Alexander&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3267810&rft_dat=%3Cproquest_ieee_%3E2806220590%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806220590&rft_id=info:pmid/&rft_ieee_id=10103690&rft_doaj_id=oai_doaj_org_article_02c83bd437be4c11b15fbd5aaf59cc4a&rfr_iscdi=true