Calibration of Compact Resist Model Through CNN Training

We notice that the compact resist model can be mapped to a simple CNN (convolutional neural network): convolutional layer corresponds to convolutions between input images and resist kernels, and a fully connected layer can model the formation of weighted sum of convolutions followed by the compariso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2023-05, Vol.36 (2), p.1-1
Hauptverfasser: Kwon, Yonghwi, Shin, Youngsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 2
container_start_page 1
container_title IEEE transactions on semiconductor manufacturing
container_volume 36
creator Kwon, Yonghwi
Shin, Youngsoo
description We notice that the compact resist model can be mapped to a simple CNN (convolutional neural network): convolutional layer corresponds to convolutions between input images and resist kernels, and a fully connected layer can model the formation of weighted sum of convolutions followed by the comparison to threshold to determine the development. Resist kernels correspond to convolution filters, so they can be obtained through CNN training, which is a key motivation. A number of challenges are identified and solutions are proposed: (1) We demonstrate a CNN structure that can be mapped to a resist model. (2) Convolution filters are large images and cannot be trained with standard methods. Adaptive learning rate and gradient clipping are applied. (3) Convolution filters may easily be overfitted if training data is not enough. We apply gradient descent for fast initialization of filters. (4) CNN is trained with printability of image pixels rather than CD values. Extraction of pixels and their sampling are addressed. The number of kernels and the number of convolutions can greatly be reduced through the proposed method: 22 standard kernel functions are reduced to only 4 optimized ones, which contributes to 44% faster lithography simulation yet accuracy is improved by 10%.
doi_str_mv 10.1109/TSM.2023.3267670
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10103175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10103175</ieee_id><sourcerecordid>2809879708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-b4ae885974ead74b63e3b8324cfeae342a8fc9080270042e9ed27a2b82800f643</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_ortEUVQkNoiQZgtJ31pU7VxsdOBf0-qdmC6y7n3SoeQewYTxsA-lV_zCQcuJoLnOtdwQUZMKZNxIdUlGYGxMssV6Gtyk9IGgElp9YiYwm_bKvq-DR0NDS3Cbu_rnn5ialNP52GJW1quYzis1rRYLGgZfdu13eqWXDV-m_DunGPy_fpSFm_Z7GP6XjzPsppL1WeV9GiMslqiX2pZ5QJFZQSXdYMeheTeNLUFA1wDSI4Wl1x7XhluAJpcijF5PO3uY_g5YOrdJhxiN1y6AbFGWw1moOBE1TGkFLFx-9jufPx1DNzRjxv8uKMfd_YzVB5OlRYR_-EMBNNK_AHItl9X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809879708</pqid></control><display><type>article</type><title>Calibration of Compact Resist Model Through CNN Training</title><source>IEEE Electronic Library (IEL)</source><creator>Kwon, Yonghwi ; Shin, Youngsoo</creator><creatorcontrib>Kwon, Yonghwi ; Shin, Youngsoo</creatorcontrib><description>We notice that the compact resist model can be mapped to a simple CNN (convolutional neural network): convolutional layer corresponds to convolutions between input images and resist kernels, and a fully connected layer can model the formation of weighted sum of convolutions followed by the comparison to threshold to determine the development. Resist kernels correspond to convolution filters, so they can be obtained through CNN training, which is a key motivation. A number of challenges are identified and solutions are proposed: (1) We demonstrate a CNN structure that can be mapped to a resist model. (2) Convolution filters are large images and cannot be trained with standard methods. Adaptive learning rate and gradient clipping are applied. (3) Convolution filters may easily be overfitted if training data is not enough. We apply gradient descent for fast initialization of filters. (4) CNN is trained with printability of image pixels rather than CD values. Extraction of pixels and their sampling are addressed. The number of kernels and the number of convolutions can greatly be reduced through the proposed method: 22 standard kernel functions are reduced to only 4 optimized ones, which contributes to 44% faster lithography simulation yet accuracy is improved by 10%.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2023.3267670</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Compact resist model ; Computational modeling ; Convolution ; convolutional neural network (CNN) ; Convolutional neural networks ; Image filters ; Kernel ; Kernel functions ; Pixels ; resist kernels ; Resists ; Semiconductor device modeling ; Training</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2023-05, Vol.36 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-b4ae885974ead74b63e3b8324cfeae342a8fc9080270042e9ed27a2b82800f643</cites><orcidid>0000-0001-5902-7900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10103175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10103175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwon, Yonghwi</creatorcontrib><creatorcontrib>Shin, Youngsoo</creatorcontrib><title>Calibration of Compact Resist Model Through CNN Training</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>We notice that the compact resist model can be mapped to a simple CNN (convolutional neural network): convolutional layer corresponds to convolutions between input images and resist kernels, and a fully connected layer can model the formation of weighted sum of convolutions followed by the comparison to threshold to determine the development. Resist kernels correspond to convolution filters, so they can be obtained through CNN training, which is a key motivation. A number of challenges are identified and solutions are proposed: (1) We demonstrate a CNN structure that can be mapped to a resist model. (2) Convolution filters are large images and cannot be trained with standard methods. Adaptive learning rate and gradient clipping are applied. (3) Convolution filters may easily be overfitted if training data is not enough. We apply gradient descent for fast initialization of filters. (4) CNN is trained with printability of image pixels rather than CD values. Extraction of pixels and their sampling are addressed. The number of kernels and the number of convolutions can greatly be reduced through the proposed method: 22 standard kernel functions are reduced to only 4 optimized ones, which contributes to 44% faster lithography simulation yet accuracy is improved by 10%.</description><subject>Artificial neural networks</subject><subject>Compact resist model</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Convolutional neural networks</subject><subject>Image filters</subject><subject>Kernel</subject><subject>Kernel functions</subject><subject>Pixels</subject><subject>resist kernels</subject><subject>Resists</subject><subject>Semiconductor device modeling</subject><subject>Training</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_ortEUVQkNoiQZgtJ31pU7VxsdOBf0-qdmC6y7n3SoeQewYTxsA-lV_zCQcuJoLnOtdwQUZMKZNxIdUlGYGxMssV6Gtyk9IGgElp9YiYwm_bKvq-DR0NDS3Cbu_rnn5ialNP52GJW1quYzis1rRYLGgZfdu13eqWXDV-m_DunGPy_fpSFm_Z7GP6XjzPsppL1WeV9GiMslqiX2pZ5QJFZQSXdYMeheTeNLUFA1wDSI4Wl1x7XhluAJpcijF5PO3uY_g5YOrdJhxiN1y6AbFGWw1moOBE1TGkFLFx-9jufPx1DNzRjxv8uKMfd_YzVB5OlRYR_-EMBNNK_AHItl9X</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Kwon, Yonghwi</creator><creator>Shin, Youngsoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5902-7900</orcidid></search><sort><creationdate>20230501</creationdate><title>Calibration of Compact Resist Model Through CNN Training</title><author>Kwon, Yonghwi ; Shin, Youngsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-b4ae885974ead74b63e3b8324cfeae342a8fc9080270042e9ed27a2b82800f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Compact resist model</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Convolutional neural networks</topic><topic>Image filters</topic><topic>Kernel</topic><topic>Kernel functions</topic><topic>Pixels</topic><topic>resist kernels</topic><topic>Resists</topic><topic>Semiconductor device modeling</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Yonghwi</creatorcontrib><creatorcontrib>Shin, Youngsoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwon, Yonghwi</au><au>Shin, Youngsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of Compact Resist Model Through CNN Training</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>We notice that the compact resist model can be mapped to a simple CNN (convolutional neural network): convolutional layer corresponds to convolutions between input images and resist kernels, and a fully connected layer can model the formation of weighted sum of convolutions followed by the comparison to threshold to determine the development. Resist kernels correspond to convolution filters, so they can be obtained through CNN training, which is a key motivation. A number of challenges are identified and solutions are proposed: (1) We demonstrate a CNN structure that can be mapped to a resist model. (2) Convolution filters are large images and cannot be trained with standard methods. Adaptive learning rate and gradient clipping are applied. (3) Convolution filters may easily be overfitted if training data is not enough. We apply gradient descent for fast initialization of filters. (4) CNN is trained with printability of image pixels rather than CD values. Extraction of pixels and their sampling are addressed. The number of kernels and the number of convolutions can greatly be reduced through the proposed method: 22 standard kernel functions are reduced to only 4 optimized ones, which contributes to 44% faster lithography simulation yet accuracy is improved by 10%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2023.3267670</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5902-7900</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2023-05, Vol.36 (2), p.1-1
issn 0894-6507
1558-2345
language eng
recordid cdi_ieee_primary_10103175
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Compact resist model
Computational modeling
Convolution
convolutional neural network (CNN)
Convolutional neural networks
Image filters
Kernel
Kernel functions
Pixels
resist kernels
Resists
Semiconductor device modeling
Training
title Calibration of Compact Resist Model Through CNN Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20Compact%20Resist%20Model%20Through%20CNN%20Training&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Kwon,%20Yonghwi&rft.date=2023-05-01&rft.volume=36&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2023.3267670&rft_dat=%3Cproquest_RIE%3E2809879708%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809879708&rft_id=info:pmid/&rft_ieee_id=10103175&rfr_iscdi=true