Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading

Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2023-04, p.1-1
Hauptverfasser: Sun, Feng, Zhang, Zhenjiang, Chang, Xiaolin, Zhu, Kaige
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE eTransactions on network and service management
container_volume
creator Sun, Feng
Zhang, Zhenjiang
Chang, Xiaolin
Zhu, Kaige
description Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.
doi_str_mv 10.1109/TNSM.2023.3266779
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10102305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10102305</ieee_id><sourcerecordid>10102305</sourcerecordid><originalsourceid>FETCH-LOGICAL-i91t-6475b7fa7f2c92a2bf1b109f6260099679fb386e0c42819b467d21289b229d963</originalsourceid><addsrcrecordid>eNotkNFKwzAYhYMgOKcPIHiRF2hN_rRJ452M6QbVgfZ-pO2fEbcmJe0me3sr8-rAxzkHziHkgbOUc6afqo-v9xQYiFSAlErpKzLjWkCS5ULdkNth-GYsL7iGGdlX4cfEdqArHDGGHXoMx4Eu_cnF4Dv04zMtz6Y_-nBKQnQTMCO2dN31lwT9ROdtiA3-mWmJJnrnd3RCtDLDnm6sPQTTTuyOXFtzGPD-X-ekel1Wi1VSbt7Wi5cycZqPicxUXitrlIVGg4Ha8npaZSVIxrSWSttaFBJZk8G0oc6kaoFDoWsA3Wop5uTxUusQcdtH15l43nLGp0dYLn4BVbVWuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Feng ; Zhang, Zhenjiang ; Chang, Xiaolin ; Zhu, Kaige</creator><creatorcontrib>Sun, Feng ; Zhang, Zhenjiang ; Chang, Xiaolin ; Zhu, Kaige</creatorcontrib><description>Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.</description><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3266779</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Edge computing ; Federated Learning ; Lyapunov optimization ; Optimization ; Reinforcement Learning ; Resource management ; Servers ; Task analysis ; Task offloading ; Training</subject><ispartof>IEEE eTransactions on network and service management, 2023-04, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0217-3012 ; 0000-0002-5788-1182 ; 0000-0002-2975-8857 ; 0000-0003-3695-4888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10102305$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10102305$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Chang, Xiaolin</creatorcontrib><creatorcontrib>Zhu, Kaige</creatorcontrib><title>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.</description><subject>Computational modeling</subject><subject>Edge computing</subject><subject>Federated Learning</subject><subject>Lyapunov optimization</subject><subject>Optimization</subject><subject>Reinforcement Learning</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Task offloading</subject><subject>Training</subject><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkNFKwzAYhYMgOKcPIHiRF2hN_rRJ452M6QbVgfZ-pO2fEbcmJe0me3sr8-rAxzkHziHkgbOUc6afqo-v9xQYiFSAlErpKzLjWkCS5ULdkNth-GYsL7iGGdlX4cfEdqArHDGGHXoMx4Eu_cnF4Dv04zMtz6Y_-nBKQnQTMCO2dN31lwT9ROdtiA3-mWmJJnrnd3RCtDLDnm6sPQTTTuyOXFtzGPD-X-ekel1Wi1VSbt7Wi5cycZqPicxUXitrlIVGg4Ha8npaZSVIxrSWSttaFBJZk8G0oc6kaoFDoWsA3Wop5uTxUusQcdtH15l43nLGp0dYLn4BVbVWuA</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Sun, Feng</creator><creator>Zhang, Zhenjiang</creator><creator>Chang, Xiaolin</creator><creator>Zhu, Kaige</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0002-5788-1182</orcidid><orcidid>https://orcid.org/0000-0002-2975-8857</orcidid><orcidid>https://orcid.org/0000-0003-3695-4888</orcidid></search><sort><creationdate>20230412</creationdate><title>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</title><author>Sun, Feng ; Zhang, Zhenjiang ; Chang, Xiaolin ; Zhu, Kaige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i91t-6475b7fa7f2c92a2bf1b109f6260099679fb386e0c42819b467d21289b229d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Edge computing</topic><topic>Federated Learning</topic><topic>Lyapunov optimization</topic><topic>Optimization</topic><topic>Reinforcement Learning</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Task offloading</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Chang, Xiaolin</creatorcontrib><creatorcontrib>Zhu, Kaige</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Feng</au><au>Zhang, Zhenjiang</au><au>Chang, Xiaolin</au><au>Zhu, Kaige</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-04-12</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2023.3266779</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0002-5788-1182</orcidid><orcidid>https://orcid.org/0000-0002-2975-8857</orcidid><orcidid>https://orcid.org/0000-0003-3695-4888</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2023-04, p.1-1
issn 1932-4537
language eng
recordid cdi_ieee_primary_10102305
source IEEE Electronic Library (IEL)
subjects Computational modeling
Edge computing
Federated Learning
Lyapunov optimization
Optimization
Reinforcement Learning
Resource management
Servers
Task analysis
Task offloading
Training
title Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Heterogeneous%20Environment:%20Lyapunov-orientated%20ImpHetero%20Reinforcement%20Learning%20for%20Task%20Offloading&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Sun,%20Feng&rft.date=2023-04-12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3266779&rft_dat=%3Cieee_RIE%3E10102305%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10102305&rfr_iscdi=true