Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading
Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms l...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2023-04, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE eTransactions on network and service management |
container_volume | |
creator | Sun, Feng Zhang, Zhenjiang Chang, Xiaolin Zhu, Kaige |
description | Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment. |
doi_str_mv | 10.1109/TNSM.2023.3266779 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10102305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10102305</ieee_id><sourcerecordid>10102305</sourcerecordid><originalsourceid>FETCH-LOGICAL-i91t-6475b7fa7f2c92a2bf1b109f6260099679fb386e0c42819b467d21289b229d963</originalsourceid><addsrcrecordid>eNotkNFKwzAYhYMgOKcPIHiRF2hN_rRJ452M6QbVgfZ-pO2fEbcmJe0me3sr8-rAxzkHziHkgbOUc6afqo-v9xQYiFSAlErpKzLjWkCS5ULdkNth-GYsL7iGGdlX4cfEdqArHDGGHXoMx4Eu_cnF4Dv04zMtz6Y_-nBKQnQTMCO2dN31lwT9ROdtiA3-mWmJJnrnd3RCtDLDnm6sPQTTTuyOXFtzGPD-X-ekel1Wi1VSbt7Wi5cycZqPicxUXitrlIVGg4Ha8npaZSVIxrSWSttaFBJZk8G0oc6kaoFDoWsA3Wop5uTxUusQcdtH15l43nLGp0dYLn4BVbVWuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Feng ; Zhang, Zhenjiang ; Chang, Xiaolin ; Zhu, Kaige</creator><creatorcontrib>Sun, Feng ; Zhang, Zhenjiang ; Chang, Xiaolin ; Zhu, Kaige</creatorcontrib><description>Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.</description><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3266779</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Edge computing ; Federated Learning ; Lyapunov optimization ; Optimization ; Reinforcement Learning ; Resource management ; Servers ; Task analysis ; Task offloading ; Training</subject><ispartof>IEEE eTransactions on network and service management, 2023-04, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0217-3012 ; 0000-0002-5788-1182 ; 0000-0002-2975-8857 ; 0000-0003-3695-4888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10102305$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10102305$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Chang, Xiaolin</creatorcontrib><creatorcontrib>Zhu, Kaige</creatorcontrib><title>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.</description><subject>Computational modeling</subject><subject>Edge computing</subject><subject>Federated Learning</subject><subject>Lyapunov optimization</subject><subject>Optimization</subject><subject>Reinforcement Learning</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Task offloading</subject><subject>Training</subject><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkNFKwzAYhYMgOKcPIHiRF2hN_rRJ452M6QbVgfZ-pO2fEbcmJe0me3sr8-rAxzkHziHkgbOUc6afqo-v9xQYiFSAlErpKzLjWkCS5ULdkNth-GYsL7iGGdlX4cfEdqArHDGGHXoMx4Eu_cnF4Dv04zMtz6Y_-nBKQnQTMCO2dN31lwT9ROdtiA3-mWmJJnrnd3RCtDLDnm6sPQTTTuyOXFtzGPD-X-ekel1Wi1VSbt7Wi5cycZqPicxUXitrlIVGg4Ha8npaZSVIxrSWSttaFBJZk8G0oc6kaoFDoWsA3Wop5uTxUusQcdtH15l43nLGp0dYLn4BVbVWuA</recordid><startdate>20230412</startdate><enddate>20230412</enddate><creator>Sun, Feng</creator><creator>Zhang, Zhenjiang</creator><creator>Chang, Xiaolin</creator><creator>Zhu, Kaige</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0002-5788-1182</orcidid><orcidid>https://orcid.org/0000-0002-2975-8857</orcidid><orcidid>https://orcid.org/0000-0003-3695-4888</orcidid></search><sort><creationdate>20230412</creationdate><title>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</title><author>Sun, Feng ; Zhang, Zhenjiang ; Chang, Xiaolin ; Zhu, Kaige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i91t-6475b7fa7f2c92a2bf1b109f6260099679fb386e0c42819b467d21289b229d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational modeling</topic><topic>Edge computing</topic><topic>Federated Learning</topic><topic>Lyapunov optimization</topic><topic>Optimization</topic><topic>Reinforcement Learning</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Task offloading</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Feng</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Chang, Xiaolin</creatorcontrib><creatorcontrib>Zhu, Kaige</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Feng</au><au>Zhang, Zhenjiang</au><au>Chang, Xiaolin</au><au>Zhu, Kaige</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-04-12</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Task offloading combined with reinforcement learning (RL) is a promising research direction in edge computing. However, the intractability in the training of RL and the heterogeneity of network devices have hindered the application of RL in large-scale networks. Moreover, traditional RL algorithms lack mechanisms to share information effectively in a heterogeneous environment, which makes it more difficult for RL algorithms to converge due to the lack of global information. This article focuses on the task offloading problem in a heterogeneous environment. First, we give a formalized representation of the Lyapunov function to normalize both data and virtual energy queue operations. Subsequently, we jointly consider the computing rate and energy consumption in task offloading and then derive the optimization target leveraging Lyapunov optimization. A Deep Deterministic Policy Gradient(DDPG)-based multiple continuous variable decision model is proposed to make the optimal offloading decision in edge computing. Considering the heterogeneous environment, we improve Hetero Federated Learning (HFL) by introducing Kullback-Leibler (KL) divergence to accelerate the convergence of our DDPG based model. Experiments demonstrate that our algorithm accelerates the search for the optimal task offloading decision in heterogeneous environment.</abstract><pub>IEEE</pub><doi>10.1109/TNSM.2023.3266779</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><orcidid>https://orcid.org/0000-0002-5788-1182</orcidid><orcidid>https://orcid.org/0000-0002-2975-8857</orcidid><orcidid>https://orcid.org/0000-0003-3695-4888</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2023-04, p.1-1 |
issn | 1932-4537 |
language | eng |
recordid | cdi_ieee_primary_10102305 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Edge computing Federated Learning Lyapunov optimization Optimization Reinforcement Learning Resource management Servers Task analysis Task offloading Training |
title | Towards Heterogeneous Environment: Lyapunov-orientated ImpHetero Reinforcement Learning for Task Offloading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Heterogeneous%20Environment:%20Lyapunov-orientated%20ImpHetero%20Reinforcement%20Learning%20for%20Task%20Offloading&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Sun,%20Feng&rft.date=2023-04-12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3266779&rft_dat=%3Cieee_RIE%3E10102305%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10102305&rfr_iscdi=true |