DP-A: For Path Planing of UGV and Contactless Delivery

The unmanned logistics and distribution urgently require a large number of unmanned ground vehicles(UGVs) under the influence of the potential spread of the Coronavirus Disease 2019 (COVID-19). The path planning of UGV relies excessively on SLAM map, and has no self-optimization and learning ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-01, Vol.25 (1), p.907-919
Hauptverfasser: Gan, Xingli, Huo, Zhihui, Li, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 919
container_issue 1
container_start_page 907
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Gan, Xingli
Huo, Zhihui
Li, Wei
description The unmanned logistics and distribution urgently require a large number of unmanned ground vehicles(UGVs) under the influence of the potential spread of the Coronavirus Disease 2019 (COVID-19). The path planning of UGV relies excessively on SLAM map, and has no self-optimization and learning ability for the space containing a large number of unknown obstacles. In this paper, a new dynamic parameter-A* (DP-A*) algorithm is proposed, which is based on the A* algorithm and enables the UGV to continuously optimize the path while performing the same task repeatedly. First, the original evaluation functions of the A* algorithm are modified by Q-Learning to memory the coordinates of unknown obstacle. Then, Q-table is adopted as an auxiliary guidance for recording the characteristics of environmental changes and generating heuristic factor to overcome the shortcoming of the A* algorithm. At last, the DP-A* algorithm can realize path planning in the instantaneous changing environment, record the actual situation of obstacles encountered, and gradually optimize the path in the task that needs multiple explorations. By several simulations with different characteristics, it is shown that our algorithm outperforms Q-learning, Sarsa and A* according to the evaluation criteria such as convergence speed, memory systems consume, Optimization ability of path planning and dynamic learning ability.
doi_str_mv 10.1109/TITS.2023.3258186
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10101684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10101684</ieee_id><sourcerecordid>2915734376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2044440613dd3b804e0ebbe61bb48f60c73e5f0d37daedcc40e62437e04f38543</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQQBdRsFZ_gOBhwXPq7Gc23kpra6FgwNbrskkmmhKTupsK_fcmtAdnDjMMb2bgEXLPYMIYJE-b1eZ9woGLieDKMKMvyIgpZSIApi-HnssoAQXX5CaEXT-VirER0fM0mj7TRetp6rovmtauqZpP2pZ0u_ygrinorG06l3c1hkDnWFe_6I-35Kp0dcC7cx2T7eJlM3uN1m_L1Wy6jnKeyC7iIPsAzURRiMyARMAsQ82yTJpSQx4LVCUUIi4cFnkuATWXIkaQpTBKijF5PN3d-_bngKGzu_bgm_6l5QlTsehh3VPsROW-DcFjafe--nb-aBnYQY8d9NhBjz3r6XceTjsVIv7j-9RGij9H-l4b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734376</pqid></control><display><type>article</type><title>DP-A: For Path Planing of UGV and Contactless Delivery</title><source>IEEE Electronic Library (IEL)</source><creator>Gan, Xingli ; Huo, Zhihui ; Li, Wei</creator><creatorcontrib>Gan, Xingli ; Huo, Zhihui ; Li, Wei</creatorcontrib><description>The unmanned logistics and distribution urgently require a large number of unmanned ground vehicles(UGVs) under the influence of the potential spread of the Coronavirus Disease 2019 (COVID-19). The path planning of UGV relies excessively on SLAM map, and has no self-optimization and learning ability for the space containing a large number of unknown obstacles. In this paper, a new dynamic parameter-A* (DP-A*) algorithm is proposed, which is based on the A* algorithm and enables the UGV to continuously optimize the path while performing the same task repeatedly. First, the original evaluation functions of the A* algorithm are modified by Q-Learning to memory the coordinates of unknown obstacle. Then, Q-table is adopted as an auxiliary guidance for recording the characteristics of environmental changes and generating heuristic factor to overcome the shortcoming of the A* algorithm. At last, the DP-A* algorithm can realize path planning in the instantaneous changing environment, record the actual situation of obstacles encountered, and gradually optimize the path in the task that needs multiple explorations. By several simulations with different characteristics, it is shown that our algorithm outperforms Q-learning, Sarsa and A* according to the evaluation criteria such as convergence speed, memory systems consume, Optimization ability of path planning and dynamic learning ability.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3258186</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>A-Star ; Algorithms ; Autonomous vehicles ; Barriers ; Changing environments ; Classification algorithms ; Collision avoidance ; contactless delivery ; Coronaviruses ; COVID-19 ; Heuristic algorithms ; Logistics ; Machine learning ; Optimization ; Path planning ; Planing ; Planning ; Q-learning ; Reinforcement learning ; robotics ; Robots ; Unmanned ground vehicles ; unmanned logistics ; Viral diseases</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-01, Vol.25 (1), p.907-919</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-2044440613dd3b804e0ebbe61bb48f60c73e5f0d37daedcc40e62437e04f38543</citedby><cites>FETCH-LOGICAL-c294t-2044440613dd3b804e0ebbe61bb48f60c73e5f0d37daedcc40e62437e04f38543</cites><orcidid>0000-0003-1212-0715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10101684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10101684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gan, Xingli</creatorcontrib><creatorcontrib>Huo, Zhihui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><title>DP-A: For Path Planing of UGV and Contactless Delivery</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The unmanned logistics and distribution urgently require a large number of unmanned ground vehicles(UGVs) under the influence of the potential spread of the Coronavirus Disease 2019 (COVID-19). The path planning of UGV relies excessively on SLAM map, and has no self-optimization and learning ability for the space containing a large number of unknown obstacles. In this paper, a new dynamic parameter-A* (DP-A*) algorithm is proposed, which is based on the A* algorithm and enables the UGV to continuously optimize the path while performing the same task repeatedly. First, the original evaluation functions of the A* algorithm are modified by Q-Learning to memory the coordinates of unknown obstacle. Then, Q-table is adopted as an auxiliary guidance for recording the characteristics of environmental changes and generating heuristic factor to overcome the shortcoming of the A* algorithm. At last, the DP-A* algorithm can realize path planning in the instantaneous changing environment, record the actual situation of obstacles encountered, and gradually optimize the path in the task that needs multiple explorations. By several simulations with different characteristics, it is shown that our algorithm outperforms Q-learning, Sarsa and A* according to the evaluation criteria such as convergence speed, memory systems consume, Optimization ability of path planning and dynamic learning ability.</description><subject>A-Star</subject><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Barriers</subject><subject>Changing environments</subject><subject>Classification algorithms</subject><subject>Collision avoidance</subject><subject>contactless delivery</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Heuristic algorithms</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Planing</subject><subject>Planning</subject><subject>Q-learning</subject><subject>Reinforcement learning</subject><subject>robotics</subject><subject>Robots</subject><subject>Unmanned ground vehicles</subject><subject>unmanned logistics</subject><subject>Viral diseases</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQQBdRsFZ_gOBhwXPq7Gc23kpra6FgwNbrskkmmhKTupsK_fcmtAdnDjMMb2bgEXLPYMIYJE-b1eZ9woGLieDKMKMvyIgpZSIApi-HnssoAQXX5CaEXT-VirER0fM0mj7TRetp6rovmtauqZpP2pZ0u_ygrinorG06l3c1hkDnWFe_6I-35Kp0dcC7cx2T7eJlM3uN1m_L1Wy6jnKeyC7iIPsAzURRiMyARMAsQ82yTJpSQx4LVCUUIi4cFnkuATWXIkaQpTBKijF5PN3d-_bngKGzu_bgm_6l5QlTsehh3VPsROW-DcFjafe--nb-aBnYQY8d9NhBjz3r6XceTjsVIv7j-9RGij9H-l4b</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Gan, Xingli</creator><creator>Huo, Zhihui</creator><creator>Li, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1212-0715</orcidid></search><sort><creationdate>202401</creationdate><title>DP-A: For Path Planing of UGV and Contactless Delivery</title><author>Gan, Xingli ; Huo, Zhihui ; Li, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2044440613dd3b804e0ebbe61bb48f60c73e5f0d37daedcc40e62437e04f38543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A-Star</topic><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Barriers</topic><topic>Changing environments</topic><topic>Classification algorithms</topic><topic>Collision avoidance</topic><topic>contactless delivery</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Heuristic algorithms</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Planing</topic><topic>Planning</topic><topic>Q-learning</topic><topic>Reinforcement learning</topic><topic>robotics</topic><topic>Robots</topic><topic>Unmanned ground vehicles</topic><topic>unmanned logistics</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gan, Xingli</creatorcontrib><creatorcontrib>Huo, Zhihui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gan, Xingli</au><au>Huo, Zhihui</au><au>Li, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DP-A: For Path Planing of UGV and Contactless Delivery</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-01</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>907</spage><epage>919</epage><pages>907-919</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The unmanned logistics and distribution urgently require a large number of unmanned ground vehicles(UGVs) under the influence of the potential spread of the Coronavirus Disease 2019 (COVID-19). The path planning of UGV relies excessively on SLAM map, and has no self-optimization and learning ability for the space containing a large number of unknown obstacles. In this paper, a new dynamic parameter-A* (DP-A*) algorithm is proposed, which is based on the A* algorithm and enables the UGV to continuously optimize the path while performing the same task repeatedly. First, the original evaluation functions of the A* algorithm are modified by Q-Learning to memory the coordinates of unknown obstacle. Then, Q-table is adopted as an auxiliary guidance for recording the characteristics of environmental changes and generating heuristic factor to overcome the shortcoming of the A* algorithm. At last, the DP-A* algorithm can realize path planning in the instantaneous changing environment, record the actual situation of obstacles encountered, and gradually optimize the path in the task that needs multiple explorations. By several simulations with different characteristics, it is shown that our algorithm outperforms Q-learning, Sarsa and A* according to the evaluation criteria such as convergence speed, memory systems consume, Optimization ability of path planning and dynamic learning ability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3258186</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1212-0715</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-01, Vol.25 (1), p.907-919
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10101684
source IEEE Electronic Library (IEL)
subjects A-Star
Algorithms
Autonomous vehicles
Barriers
Changing environments
Classification algorithms
Collision avoidance
contactless delivery
Coronaviruses
COVID-19
Heuristic algorithms
Logistics
Machine learning
Optimization
Path planning
Planing
Planning
Q-learning
Reinforcement learning
robotics
Robots
Unmanned ground vehicles
unmanned logistics
Viral diseases
title DP-A: For Path Planing of UGV and Contactless Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DP-A:%20For%20Path%20Planing%20of%20UGV%20and%20Contactless%20Delivery&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Gan,%20Xingli&rft.date=2024-01&rft.volume=25&rft.issue=1&rft.spage=907&rft.epage=919&rft.pages=907-919&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3258186&rft_dat=%3Cproquest_RIE%3E2915734376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734376&rft_id=info:pmid/&rft_ieee_id=10101684&rfr_iscdi=true