Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring

Most of the Human Activity Recognition (HAR) research focuses on the use of smartphone in-built accelerometer sensors. As accelerometers are location-centric, they measure acceleration signals only at the installation points, increasing the number of sensors required to identify the whole human body...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-05, Vol.23 (9), p.1-1
Hauptverfasser: Mani, Neelakandan, Haridoss, Prathap, George, Boby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 9
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Mani, Neelakandan
Haridoss, Prathap
George, Boby
description Most of the Human Activity Recognition (HAR) research focuses on the use of smartphone in-built accelerometer sensors. As accelerometers are location-centric, they measure acceleration signals only at the installation points, increasing the number of sensors required to identify the whole human body activity. They have an inherent property of being noisy, thereby increasing the processing complexity and duration. This paper, for the first time, proposes a body-worn suspender integrated with a strain sensor system that captures the body movement's periodicity, resulting in less noisy readings with non-localized measurements. The proposed smart suspender system reduces the need for localized sensors to measure complex activities at various points and lessen the pre-processing time for smoothening the noise signals. The system recognizes three simple and eleven complex human activities using machine and deep learning algorithms with best accuracy value of 97.85%. A comparison of the performance between kernel and linear discriminant analysis (KDA and LDA) for this system is made and KDA outperformed LDA across most classifiers.
doi_str_mv 10.1109/JSEN.2023.3263231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10092476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10092476</ieee_id><sourcerecordid>2808830374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8cd697caca0ad6cf15ac916af8ee1218cf61178b950e89c802d7880013448e4d3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k2Q3ybEUtUqrwip4CzGbtSk2W5Ndpf_eXdqDp5lh3nc-HoQugUwAiLp5LG-fJpRQNmG0YJTBERpBnssMBJfHQ85Ixpl4P0VnKa0JASVyMUIv5cbEFpdd2rpQuZjwr29XuHQhNX1hQoWXxq58cHjhTAw-fOK6iXjebUzAU9v6H9_u8LIJvm1i3z1HJ7X5Su7iEMfo7e72dTbPFs_3D7PpIrNU8TaTtiqUsMYaYqrC1pAbq6AwtXQOKEhbFwBCfqicOKmsJLQSUvZnM86l4xUbo-v93G1svjuXWr1uuhj6lZpKIiUjTPBeBXuVjU1K0dV6G33_8U4D0QM4PYDTAzh9ANd7rvYe75z7pyeKclGwP-Qmaco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808830374</pqid></control><display><type>article</type><title>Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Mani, Neelakandan ; Haridoss, Prathap ; George, Boby</creator><creatorcontrib>Mani, Neelakandan ; Haridoss, Prathap ; George, Boby</creatorcontrib><description>Most of the Human Activity Recognition (HAR) research focuses on the use of smartphone in-built accelerometer sensors. As accelerometers are location-centric, they measure acceleration signals only at the installation points, increasing the number of sensors required to identify the whole human body activity. They have an inherent property of being noisy, thereby increasing the processing complexity and duration. This paper, for the first time, proposes a body-worn suspender integrated with a strain sensor system that captures the body movement's periodicity, resulting in less noisy readings with non-localized measurements. The proposed smart suspender system reduces the need for localized sensors to measure complex activities at various points and lessen the pre-processing time for smoothening the noise signals. The system recognizes three simple and eleven complex human activities using machine and deep learning algorithms with best accuracy value of 97.85%. A comparison of the performance between kernel and linear discriminant analysis (KDA and LDA) for this system is made and KDA outperformed LDA across most classifiers.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3263231</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration measurement ; Accelerometers ; activity ; Algorithms ; Capacitive sensors ; Complexity ; Decision trees ; Deep learning ; Discriminant analysis ; HAR ; human ; Human activity recognition ; Human motion ; Intelligent sensors ; KDA ; KNN ; LDA ; Logistic regression ; LSTM ; Machine learning ; Noise measurement ; Prototypes ; Random Forest ; recognition ; sensor ; Sensors ; Smart sensors ; Strain ; strain sensor ; SVM ; Wearable</subject><ispartof>IEEE sensors journal, 2023-05, Vol.23 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8cd697caca0ad6cf15ac916af8ee1218cf61178b950e89c802d7880013448e4d3</citedby><cites>FETCH-LOGICAL-c294t-8cd697caca0ad6cf15ac916af8ee1218cf61178b950e89c802d7880013448e4d3</cites><orcidid>0000-0003-4178-7017 ; 0000-0001-9923-6328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10092476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10092476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mani, Neelakandan</creatorcontrib><creatorcontrib>Haridoss, Prathap</creatorcontrib><creatorcontrib>George, Boby</creatorcontrib><title>Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Most of the Human Activity Recognition (HAR) research focuses on the use of smartphone in-built accelerometer sensors. As accelerometers are location-centric, they measure acceleration signals only at the installation points, increasing the number of sensors required to identify the whole human body activity. They have an inherent property of being noisy, thereby increasing the processing complexity and duration. This paper, for the first time, proposes a body-worn suspender integrated with a strain sensor system that captures the body movement's periodicity, resulting in less noisy readings with non-localized measurements. The proposed smart suspender system reduces the need for localized sensors to measure complex activities at various points and lessen the pre-processing time for smoothening the noise signals. The system recognizes three simple and eleven complex human activities using machine and deep learning algorithms with best accuracy value of 97.85%. A comparison of the performance between kernel and linear discriminant analysis (KDA and LDA) for this system is made and KDA outperformed LDA across most classifiers.</description><subject>Acceleration measurement</subject><subject>Accelerometers</subject><subject>activity</subject><subject>Algorithms</subject><subject>Capacitive sensors</subject><subject>Complexity</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>HAR</subject><subject>human</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Intelligent sensors</subject><subject>KDA</subject><subject>KNN</subject><subject>LDA</subject><subject>Logistic regression</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Noise measurement</subject><subject>Prototypes</subject><subject>Random Forest</subject><subject>recognition</subject><subject>sensor</subject><subject>Sensors</subject><subject>Smart sensors</subject><subject>Strain</subject><subject>strain sensor</subject><subject>SVM</subject><subject>Wearable</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k2Q3ybEUtUqrwip4CzGbtSk2W5Ndpf_eXdqDp5lh3nc-HoQugUwAiLp5LG-fJpRQNmG0YJTBERpBnssMBJfHQ85Ixpl4P0VnKa0JASVyMUIv5cbEFpdd2rpQuZjwr29XuHQhNX1hQoWXxq58cHjhTAw-fOK6iXjebUzAU9v6H9_u8LIJvm1i3z1HJ7X5Su7iEMfo7e72dTbPFs_3D7PpIrNU8TaTtiqUsMYaYqrC1pAbq6AwtXQOKEhbFwBCfqicOKmsJLQSUvZnM86l4xUbo-v93G1svjuXWr1uuhj6lZpKIiUjTPBeBXuVjU1K0dV6G33_8U4D0QM4PYDTAzh9ANd7rvYe75z7pyeKclGwP-Qmaco</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Mani, Neelakandan</creator><creator>Haridoss, Prathap</creator><creator>George, Boby</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4178-7017</orcidid><orcidid>https://orcid.org/0000-0001-9923-6328</orcidid></search><sort><creationdate>20230501</creationdate><title>Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring</title><author>Mani, Neelakandan ; Haridoss, Prathap ; George, Boby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8cd697caca0ad6cf15ac916af8ee1218cf61178b950e89c802d7880013448e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration measurement</topic><topic>Accelerometers</topic><topic>activity</topic><topic>Algorithms</topic><topic>Capacitive sensors</topic><topic>Complexity</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>HAR</topic><topic>human</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Intelligent sensors</topic><topic>KDA</topic><topic>KNN</topic><topic>LDA</topic><topic>Logistic regression</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Noise measurement</topic><topic>Prototypes</topic><topic>Random Forest</topic><topic>recognition</topic><topic>sensor</topic><topic>Sensors</topic><topic>Smart sensors</topic><topic>Strain</topic><topic>strain sensor</topic><topic>SVM</topic><topic>Wearable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mani, Neelakandan</creatorcontrib><creatorcontrib>Haridoss, Prathap</creatorcontrib><creatorcontrib>George, Boby</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mani, Neelakandan</au><au>Haridoss, Prathap</au><au>George, Boby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>23</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Most of the Human Activity Recognition (HAR) research focuses on the use of smartphone in-built accelerometer sensors. As accelerometers are location-centric, they measure acceleration signals only at the installation points, increasing the number of sensors required to identify the whole human body activity. They have an inherent property of being noisy, thereby increasing the processing complexity and duration. This paper, for the first time, proposes a body-worn suspender integrated with a strain sensor system that captures the body movement's periodicity, resulting in less noisy readings with non-localized measurements. The proposed smart suspender system reduces the need for localized sensors to measure complex activities at various points and lessen the pre-processing time for smoothening the noise signals. The system recognizes three simple and eleven complex human activities using machine and deep learning algorithms with best accuracy value of 97.85%. A comparison of the performance between kernel and linear discriminant analysis (KDA and LDA) for this system is made and KDA outperformed LDA across most classifiers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3263231</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4178-7017</orcidid><orcidid>https://orcid.org/0000-0001-9923-6328</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-05, Vol.23 (9), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10092476
source IEEE Electronic Library (IEL)
subjects Acceleration measurement
Accelerometers
activity
Algorithms
Capacitive sensors
Complexity
Decision trees
Deep learning
Discriminant analysis
HAR
human
Human activity recognition
Human motion
Intelligent sensors
KDA
KNN
LDA
Logistic regression
LSTM
Machine learning
Noise measurement
Prototypes
Random Forest
recognition
sensor
Sensors
Smart sensors
Strain
strain sensor
SVM
Wearable
title Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Suspenders%20with%20Sensors%20and%20Machine%20Learning%20for%20Human%20Activity%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Mani,%20Neelakandan&rft.date=2023-05-01&rft.volume=23&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3263231&rft_dat=%3Cproquest_RIE%3E2808830374%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808830374&rft_id=info:pmid/&rft_ieee_id=10092476&rfr_iscdi=true