Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard
Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper present...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2023-03, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on power systems |
container_volume | |
creator | Huang, Hao Mao, Zeyu Panyam, Varuneswara Layton, Astrid Davis, Katherine R. |
description | Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience. |
doi_str_mv | 10.1109/TPWRS.2023.3262501 |
format | Article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10083292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10083292</ieee_id><sourcerecordid>10083292</sourcerecordid><originalsourceid>FETCH-ieee_primary_100832923</originalsourceid><addsrcrecordid>eNqFisuqwjAUALNQ8PkD4uL8QOtJSmu7lKtXNz6ogriS2B5LNLeRJHLRr9eFe1czMMPYgGPIOWaj3Wafb0OBIgojkYgYeYO1MU3jIM1ibLGOcxdETJJx1maHWWG0qVQhNeTmdHe-JueCtVVUeyphblUJK_L_xl5hSk5VNZyNhfyt-v0UBJNKqtp5WN61VzdNsJBPacsea56ldtT_sMuGv7PdzyJQRHS8WfUn7ePIEdNIZCL6kl-W5EIS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</title><source>IEEE Xplore</source><creator>Huang, Hao ; Mao, Zeyu ; Panyam, Varuneswara ; Layton, Astrid ; Davis, Katherine R.</creator><creatorcontrib>Huang, Hao ; Mao, Zeyu ; Panyam, Varuneswara ; Layton, Astrid ; Davis, Katherine R.</creatorcontrib><description>Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.</description><identifier>ISSN: 0885-8950</identifier><identifier>DOI: 10.1109/TPWRS.2023.3262501</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Contingency management ; Ecological Robustness ; Ecosystems ; Hazards ; Mixed-Integer Nonlinear Programming ; Planning ; Power Networks Design ; Power System Reliability ; Power System Resilience ; Power systems ; Resilience ; Robustness</subject><ispartof>IEEE transactions on power systems, 2023-03, p.1-13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4855-7441 ; 0000-0002-1603-1122 ; 0000-0003-0841-5123 ; 0000-0003-3790-2916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10083292$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids></links><search><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Mao, Zeyu</creatorcontrib><creatorcontrib>Panyam, Varuneswara</creatorcontrib><creatorcontrib>Layton, Astrid</creatorcontrib><creatorcontrib>Davis, Katherine R.</creatorcontrib><title>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.</description><subject>Contingency management</subject><subject>Ecological Robustness</subject><subject>Ecosystems</subject><subject>Hazards</subject><subject>Mixed-Integer Nonlinear Programming</subject><subject>Planning</subject><subject>Power Networks Design</subject><subject>Power System Reliability</subject><subject>Power System Resilience</subject><subject>Power systems</subject><subject>Resilience</subject><subject>Robustness</subject><issn>0885-8950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNqFisuqwjAUALNQ8PkD4uL8QOtJSmu7lKtXNz6ogriS2B5LNLeRJHLRr9eFe1czMMPYgGPIOWaj3Wafb0OBIgojkYgYeYO1MU3jIM1ibLGOcxdETJJx1maHWWG0qVQhNeTmdHe-JueCtVVUeyphblUJK_L_xl5hSk5VNZyNhfyt-v0UBJNKqtp5WN61VzdNsJBPacsea56ldtT_sMuGv7PdzyJQRHS8WfUn7ePIEdNIZCL6kl-W5EIS</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Huang, Hao</creator><creator>Mao, Zeyu</creator><creator>Panyam, Varuneswara</creator><creator>Layton, Astrid</creator><creator>Davis, Katherine R.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-4855-7441</orcidid><orcidid>https://orcid.org/0000-0002-1603-1122</orcidid><orcidid>https://orcid.org/0000-0003-0841-5123</orcidid><orcidid>https://orcid.org/0000-0003-3790-2916</orcidid></search><sort><creationdate>20230327</creationdate><title>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</title><author>Huang, Hao ; Mao, Zeyu ; Panyam, Varuneswara ; Layton, Astrid ; Davis, Katherine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100832923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contingency management</topic><topic>Ecological Robustness</topic><topic>Ecosystems</topic><topic>Hazards</topic><topic>Mixed-Integer Nonlinear Programming</topic><topic>Planning</topic><topic>Power Networks Design</topic><topic>Power System Reliability</topic><topic>Power System Resilience</topic><topic>Power systems</topic><topic>Resilience</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Mao, Zeyu</creatorcontrib><creatorcontrib>Panyam, Varuneswara</creatorcontrib><creatorcontrib>Layton, Astrid</creatorcontrib><creatorcontrib>Davis, Katherine R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hao</au><au>Mao, Zeyu</au><au>Panyam, Varuneswara</au><au>Layton, Astrid</au><au>Davis, Katherine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-03-27</date><risdate>2023</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0885-8950</issn><coden>ITPSEG</coden><abstract>Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2023.3262501</doi><orcidid>https://orcid.org/0000-0003-4855-7441</orcidid><orcidid>https://orcid.org/0000-0002-1603-1122</orcidid><orcidid>https://orcid.org/0000-0003-0841-5123</orcidid><orcidid>https://orcid.org/0000-0003-3790-2916</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2023-03, p.1-13 |
issn | 0885-8950 |
language | eng |
recordid | cdi_ieee_primary_10083292 |
source | IEEE Xplore |
subjects | Contingency management Ecological Robustness Ecosystems Hazards Mixed-Integer Nonlinear Programming Planning Power Networks Design Power System Reliability Power System Resilience Power systems Resilience Robustness |
title | Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20Robustness-Oriented%20Grid%20Network%20Design%20for%20Resilience%20Against%20Multiple%20Hazard&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Huang,%20Hao&rft.date=2023-03-27&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0885-8950&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2023.3262501&rft_dat=%3Cieee%3E10083292%3C/ieee%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10083292&rfr_iscdi=true |