Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard

Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-03, p.1-13
Hauptverfasser: Huang, Hao, Mao, Zeyu, Panyam, Varuneswara, Layton, Astrid, Davis, Katherine R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on power systems
container_volume
creator Huang, Hao
Mao, Zeyu
Panyam, Varuneswara
Layton, Astrid
Davis, Katherine R.
description Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.
doi_str_mv 10.1109/TPWRS.2023.3262501
format Article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10083292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10083292</ieee_id><sourcerecordid>10083292</sourcerecordid><originalsourceid>FETCH-ieee_primary_100832923</originalsourceid><addsrcrecordid>eNqFisuqwjAUALNQ8PkD4uL8QOtJSmu7lKtXNz6ogriS2B5LNLeRJHLRr9eFe1czMMPYgGPIOWaj3Wafb0OBIgojkYgYeYO1MU3jIM1ibLGOcxdETJJx1maHWWG0qVQhNeTmdHe-JueCtVVUeyphblUJK_L_xl5hSk5VNZyNhfyt-v0UBJNKqtp5WN61VzdNsJBPacsea56ldtT_sMuGv7PdzyJQRHS8WfUn7ePIEdNIZCL6kl-W5EIS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</title><source>IEEE Xplore</source><creator>Huang, Hao ; Mao, Zeyu ; Panyam, Varuneswara ; Layton, Astrid ; Davis, Katherine R.</creator><creatorcontrib>Huang, Hao ; Mao, Zeyu ; Panyam, Varuneswara ; Layton, Astrid ; Davis, Katherine R.</creatorcontrib><description>Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.</description><identifier>ISSN: 0885-8950</identifier><identifier>DOI: 10.1109/TPWRS.2023.3262501</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Contingency management ; Ecological Robustness ; Ecosystems ; Hazards ; Mixed-Integer Nonlinear Programming ; Planning ; Power Networks Design ; Power System Reliability ; Power System Resilience ; Power systems ; Resilience ; Robustness</subject><ispartof>IEEE transactions on power systems, 2023-03, p.1-13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4855-7441 ; 0000-0002-1603-1122 ; 0000-0003-0841-5123 ; 0000-0003-3790-2916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10083292$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids></links><search><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Mao, Zeyu</creatorcontrib><creatorcontrib>Panyam, Varuneswara</creatorcontrib><creatorcontrib>Layton, Astrid</creatorcontrib><creatorcontrib>Davis, Katherine R.</creatorcontrib><title>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.</description><subject>Contingency management</subject><subject>Ecological Robustness</subject><subject>Ecosystems</subject><subject>Hazards</subject><subject>Mixed-Integer Nonlinear Programming</subject><subject>Planning</subject><subject>Power Networks Design</subject><subject>Power System Reliability</subject><subject>Power System Resilience</subject><subject>Power systems</subject><subject>Resilience</subject><subject>Robustness</subject><issn>0885-8950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNqFisuqwjAUALNQ8PkD4uL8QOtJSmu7lKtXNz6ogriS2B5LNLeRJHLRr9eFe1czMMPYgGPIOWaj3Wafb0OBIgojkYgYeYO1MU3jIM1ibLGOcxdETJJx1maHWWG0qVQhNeTmdHe-JueCtVVUeyphblUJK_L_xl5hSk5VNZyNhfyt-v0UBJNKqtp5WN61VzdNsJBPacsea56ldtT_sMuGv7PdzyJQRHS8WfUn7ePIEdNIZCL6kl-W5EIS</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Huang, Hao</creator><creator>Mao, Zeyu</creator><creator>Panyam, Varuneswara</creator><creator>Layton, Astrid</creator><creator>Davis, Katherine R.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-4855-7441</orcidid><orcidid>https://orcid.org/0000-0002-1603-1122</orcidid><orcidid>https://orcid.org/0000-0003-0841-5123</orcidid><orcidid>https://orcid.org/0000-0003-3790-2916</orcidid></search><sort><creationdate>20230327</creationdate><title>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</title><author>Huang, Hao ; Mao, Zeyu ; Panyam, Varuneswara ; Layton, Astrid ; Davis, Katherine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_100832923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contingency management</topic><topic>Ecological Robustness</topic><topic>Ecosystems</topic><topic>Hazards</topic><topic>Mixed-Integer Nonlinear Programming</topic><topic>Planning</topic><topic>Power Networks Design</topic><topic>Power System Reliability</topic><topic>Power System Resilience</topic><topic>Power systems</topic><topic>Resilience</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Mao, Zeyu</creatorcontrib><creatorcontrib>Panyam, Varuneswara</creatorcontrib><creatorcontrib>Layton, Astrid</creatorcontrib><creatorcontrib>Davis, Katherine R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hao</au><au>Mao, Zeyu</au><au>Panyam, Varuneswara</au><au>Layton, Astrid</au><au>Davis, Katherine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2023-03-27</date><risdate>2023</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0885-8950</issn><coden>ITPSEG</coden><abstract>Power systems are critical infrastructure for reliable and secure electric energy delivery. Incidents are increasing, as unexpected multiple hazards ranging from natural disasters to cyberattacks threaten the security and functionality of society. Inspired by resilient ecosystems, this paper presents a resilient network design approach with an ecological robustness (R ECO )-oriented optimization to improve power systems' ability to maintain a secure operating state throughout unknown hazards. The approach uses R ECO , a surprisal -based metric that captures key features of an ecosystem's resilient structure, as an objective to strategically design the electrical network. The approach enables solvability and practicality by introducing a stochastic-based candidate branch creation algorithm and a Taylor series expansion for relaxation of the R ECO formulation. Finally, studies are conducted on the R ECO -oriented approach using the IEEE 24 Bus RTS and the ACTIVSg200 systems. Results demonstrate improvement of the system's reliability under multiple hazards, network properties of robust structure and equally distributed power flows, and survivability against cascading failures. From the analysis, we observe that a more redundant network structure with equally distributed power flows benefits its resilience.</abstract><pub>IEEE</pub><doi>10.1109/TPWRS.2023.3262501</doi><orcidid>https://orcid.org/0000-0003-4855-7441</orcidid><orcidid>https://orcid.org/0000-0002-1603-1122</orcidid><orcidid>https://orcid.org/0000-0003-0841-5123</orcidid><orcidid>https://orcid.org/0000-0003-3790-2916</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2023-03, p.1-13
issn 0885-8950
language eng
recordid cdi_ieee_primary_10083292
source IEEE Xplore
subjects Contingency management
Ecological Robustness
Ecosystems
Hazards
Mixed-Integer Nonlinear Programming
Planning
Power Networks Design
Power System Reliability
Power System Resilience
Power systems
Resilience
Robustness
title Ecological Robustness-Oriented Grid Network Design for Resilience Against Multiple Hazard
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecological%20Robustness-Oriented%20Grid%20Network%20Design%20for%20Resilience%20Against%20Multiple%20Hazard&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Huang,%20Hao&rft.date=2023-03-27&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0885-8950&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2023.3262501&rft_dat=%3Cieee%3E10083292%3C/ieee%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10083292&rfr_iscdi=true