On OAMP: Impact of the Orthogonal Principle

Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2023-05, Vol.71 (5), p.1-1
Hauptverfasser: Liu, Lei, Cheng, Yiyao, Liang, Shansuo, Manton, Jonathan H., Ping, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE transactions on communications
container_volume 71
creator Liu, Lei
Cheng, Yiyao
Liang, Shansuo
Manton, Jonathan H.
Ping, Li
description Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.
doi_str_mv 10.1109/TCOMM.2023.3262304
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10082977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10082977</ieee_id><sourcerecordid>2814541222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqXwBxBDJEaU8Pxsxw5bVfFRqVU6lNlKnReaqk2CnQ78e1Lageku9zy9exi755BwDtnzapovFgkCikRgigLkBRtxpUwMRulLNgLIIE61NtfsJoQtAEgQYsSe8ibKJ4vlSzTbd4Xro7aK-g1Fue837VfbFLto6evG1d2ObtlVVewC3Z1zzD7fXlfTj3iev8-mk3nsMEv72MiCyjWHNYErlUEhtMu4kSR4VpagOJFR0imnJTknZFGhkMOIkkyKUDkxZo-nu51vvw8UerttD354JVg0XCrJEXFo4anlfBuCp8p2vt4X_sdysEcp9k-KPUqxZykD9HCCaiL6B4DBTGvxC_yPW2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814541222</pqid></control><display><type>article</type><title>On OAMP: Impact of the Orthogonal Principle</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lei ; Cheng, Yiyao ; Liang, Shansuo ; Manton, Jonathan H. ; Ping, Li</creator><creatorcontrib>Liu, Lei ; Cheng, Yiyao ; Liang, Shansuo ; Manton, Jonathan H. ; Ping, Li</creatorcontrib><description>Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3262304</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; approximate message passing (AMP) ; belief propagation (BP) ; Electronic mail ; Errors ; Expectation propagation (EP) ; Haar matrices ; Iterative methods ; Linear systems ; Message passing ; Optimization ; Orthogonality ; Parameter estimation ; Principles ; Program processors ; Sensors ; Signal processing algorithms ; state evolution ; turbo ; unified framework ; vector AMP (VAMP)</subject><ispartof>IEEE transactions on communications, 2023-05, Vol.71 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</citedby><cites>FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</cites><orcidid>0000-0002-4933-5093 ; 0000-0002-4589-4138 ; 0000-0002-2441-588X ; 0000-0002-0807-2135 ; 0000-0003-4909-8208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10082977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10082977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Cheng, Yiyao</creatorcontrib><creatorcontrib>Liang, Shansuo</creatorcontrib><creatorcontrib>Manton, Jonathan H.</creatorcontrib><creatorcontrib>Ping, Li</creatorcontrib><title>On OAMP: Impact of the Orthogonal Principle</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.</description><subject>Algorithms</subject><subject>approximate message passing (AMP)</subject><subject>belief propagation (BP)</subject><subject>Electronic mail</subject><subject>Errors</subject><subject>Expectation propagation (EP)</subject><subject>Haar matrices</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Message passing</subject><subject>Optimization</subject><subject>Orthogonality</subject><subject>Parameter estimation</subject><subject>Principles</subject><subject>Program processors</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>state evolution</subject><subject>turbo</subject><subject>unified framework</subject><subject>vector AMP (VAMP)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqXwBxBDJEaU8Pxsxw5bVfFRqVU6lNlKnReaqk2CnQ78e1Lageku9zy9exi755BwDtnzapovFgkCikRgigLkBRtxpUwMRulLNgLIIE61NtfsJoQtAEgQYsSe8ibKJ4vlSzTbd4Xro7aK-g1Fue837VfbFLto6evG1d2ObtlVVewC3Z1zzD7fXlfTj3iev8-mk3nsMEv72MiCyjWHNYErlUEhtMu4kSR4VpagOJFR0imnJTknZFGhkMOIkkyKUDkxZo-nu51vvw8UerttD354JVg0XCrJEXFo4anlfBuCp8p2vt4X_sdysEcp9k-KPUqxZykD9HCCaiL6B4DBTGvxC_yPW2U</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Lei</creator><creator>Cheng, Yiyao</creator><creator>Liang, Shansuo</creator><creator>Manton, Jonathan H.</creator><creator>Ping, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4933-5093</orcidid><orcidid>https://orcid.org/0000-0002-4589-4138</orcidid><orcidid>https://orcid.org/0000-0002-2441-588X</orcidid><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4909-8208</orcidid></search><sort><creationdate>20230501</creationdate><title>On OAMP: Impact of the Orthogonal Principle</title><author>Liu, Lei ; Cheng, Yiyao ; Liang, Shansuo ; Manton, Jonathan H. ; Ping, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>approximate message passing (AMP)</topic><topic>belief propagation (BP)</topic><topic>Electronic mail</topic><topic>Errors</topic><topic>Expectation propagation (EP)</topic><topic>Haar matrices</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Message passing</topic><topic>Optimization</topic><topic>Orthogonality</topic><topic>Parameter estimation</topic><topic>Principles</topic><topic>Program processors</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>state evolution</topic><topic>turbo</topic><topic>unified framework</topic><topic>vector AMP (VAMP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Cheng, Yiyao</creatorcontrib><creatorcontrib>Liang, Shansuo</creatorcontrib><creatorcontrib>Manton, Jonathan H.</creatorcontrib><creatorcontrib>Ping, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lei</au><au>Cheng, Yiyao</au><au>Liang, Shansuo</au><au>Manton, Jonathan H.</au><au>Ping, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On OAMP: Impact of the Orthogonal Principle</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>71</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3262304</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4933-5093</orcidid><orcidid>https://orcid.org/0000-0002-4589-4138</orcidid><orcidid>https://orcid.org/0000-0002-2441-588X</orcidid><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4909-8208</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2023-05, Vol.71 (5), p.1-1
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_10082977
source IEEE Electronic Library (IEL)
subjects Algorithms
approximate message passing (AMP)
belief propagation (BP)
Electronic mail
Errors
Expectation propagation (EP)
Haar matrices
Iterative methods
Linear systems
Message passing
Optimization
Orthogonality
Parameter estimation
Principles
Program processors
Sensors
Signal processing algorithms
state evolution
turbo
unified framework
vector AMP (VAMP)
title On OAMP: Impact of the Orthogonal Principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20OAMP:%20Impact%20of%20the%20Orthogonal%20Principle&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Liu,%20Lei&rft.date=2023-05-01&rft.volume=71&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3262304&rft_dat=%3Cproquest_RIE%3E2814541222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814541222&rft_id=info:pmid/&rft_ieee_id=10082977&rfr_iscdi=true