On OAMP: Impact of the Orthogonal Principle
Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2023-05, Vol.71 (5), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on communications |
container_volume | 71 |
creator | Liu, Lei Cheng, Yiyao Liang, Shansuo Manton, Jonathan H. Ping, Li |
description | Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables. |
doi_str_mv | 10.1109/TCOMM.2023.3262304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10082977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10082977</ieee_id><sourcerecordid>2814541222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqXwBxBDJEaU8Pxsxw5bVfFRqVU6lNlKnReaqk2CnQ78e1Lageku9zy9exi755BwDtnzapovFgkCikRgigLkBRtxpUwMRulLNgLIIE61NtfsJoQtAEgQYsSe8ibKJ4vlSzTbd4Xro7aK-g1Fue837VfbFLto6evG1d2ObtlVVewC3Z1zzD7fXlfTj3iev8-mk3nsMEv72MiCyjWHNYErlUEhtMu4kSR4VpagOJFR0imnJTknZFGhkMOIkkyKUDkxZo-nu51vvw8UerttD354JVg0XCrJEXFo4anlfBuCp8p2vt4X_sdysEcp9k-KPUqxZykD9HCCaiL6B4DBTGvxC_yPW2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814541222</pqid></control><display><type>article</type><title>On OAMP: Impact of the Orthogonal Principle</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lei ; Cheng, Yiyao ; Liang, Shansuo ; Manton, Jonathan H. ; Ping, Li</creator><creatorcontrib>Liu, Lei ; Cheng, Yiyao ; Liang, Shansuo ; Manton, Jonathan H. ; Ping, Li</creatorcontrib><description>Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3262304</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; approximate message passing (AMP) ; belief propagation (BP) ; Electronic mail ; Errors ; Expectation propagation (EP) ; Haar matrices ; Iterative methods ; Linear systems ; Message passing ; Optimization ; Orthogonality ; Parameter estimation ; Principles ; Program processors ; Sensors ; Signal processing algorithms ; state evolution ; turbo ; unified framework ; vector AMP (VAMP)</subject><ispartof>IEEE transactions on communications, 2023-05, Vol.71 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</citedby><cites>FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</cites><orcidid>0000-0002-4933-5093 ; 0000-0002-4589-4138 ; 0000-0002-2441-588X ; 0000-0002-0807-2135 ; 0000-0003-4909-8208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10082977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10082977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Cheng, Yiyao</creatorcontrib><creatorcontrib>Liang, Shansuo</creatorcontrib><creatorcontrib>Manton, Jonathan H.</creatorcontrib><creatorcontrib>Ping, Li</creatorcontrib><title>On OAMP: Impact of the Orthogonal Principle</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.</description><subject>Algorithms</subject><subject>approximate message passing (AMP)</subject><subject>belief propagation (BP)</subject><subject>Electronic mail</subject><subject>Errors</subject><subject>Expectation propagation (EP)</subject><subject>Haar matrices</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Message passing</subject><subject>Optimization</subject><subject>Orthogonality</subject><subject>Parameter estimation</subject><subject>Principles</subject><subject>Program processors</subject><subject>Sensors</subject><subject>Signal processing algorithms</subject><subject>state evolution</subject><subject>turbo</subject><subject>unified framework</subject><subject>vector AMP (VAMP)</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqXwBxBDJEaU8Pxsxw5bVfFRqVU6lNlKnReaqk2CnQ78e1Lageku9zy9exi755BwDtnzapovFgkCikRgigLkBRtxpUwMRulLNgLIIE61NtfsJoQtAEgQYsSe8ibKJ4vlSzTbd4Xro7aK-g1Fue837VfbFLto6evG1d2ObtlVVewC3Z1zzD7fXlfTj3iev8-mk3nsMEv72MiCyjWHNYErlUEhtMu4kSR4VpagOJFR0imnJTknZFGhkMOIkkyKUDkxZo-nu51vvw8UerttD354JVg0XCrJEXFo4anlfBuCp8p2vt4X_sdysEcp9k-KPUqxZykD9HCCaiL6B4DBTGvxC_yPW2U</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Lei</creator><creator>Cheng, Yiyao</creator><creator>Liang, Shansuo</creator><creator>Manton, Jonathan H.</creator><creator>Ping, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4933-5093</orcidid><orcidid>https://orcid.org/0000-0002-4589-4138</orcidid><orcidid>https://orcid.org/0000-0002-2441-588X</orcidid><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4909-8208</orcidid></search><sort><creationdate>20230501</creationdate><title>On OAMP: Impact of the Orthogonal Principle</title><author>Liu, Lei ; Cheng, Yiyao ; Liang, Shansuo ; Manton, Jonathan H. ; Ping, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-84aedb10be0cd582337c9184e319dd051ee854c5c74ecc34af234109de8620fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>approximate message passing (AMP)</topic><topic>belief propagation (BP)</topic><topic>Electronic mail</topic><topic>Errors</topic><topic>Expectation propagation (EP)</topic><topic>Haar matrices</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Message passing</topic><topic>Optimization</topic><topic>Orthogonality</topic><topic>Parameter estimation</topic><topic>Principles</topic><topic>Program processors</topic><topic>Sensors</topic><topic>Signal processing algorithms</topic><topic>state evolution</topic><topic>turbo</topic><topic>unified framework</topic><topic>vector AMP (VAMP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Cheng, Yiyao</creatorcontrib><creatorcontrib>Liang, Shansuo</creatorcontrib><creatorcontrib>Manton, Jonathan H.</creatorcontrib><creatorcontrib>Ping, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lei</au><au>Cheng, Yiyao</au><au>Liang, Shansuo</au><au>Manton, Jonathan H.</au><au>Ping, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On OAMP: Impact of the Orthogonal Principle</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>71</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Approximate Message Passing (AMP) is an efficient iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions, such as sparse systems. In AMP, a so-called Onsager term is added to keep estimation errors approximately Gaussian. Orthogonal AMP (OAMP) does not require this Onsager term, relying instead on an orthogonalization procedure to keep the current errors uncorrelated with (i.e., orthogonal to) past errors. In this paper, we show the generality and significance of the orthogonality in ensuring that errors are "asymptotically independently and identically distributed Gaussian" (AIIDG). This AIIDG property, which is essential for the attractive performance of OAMP, holds for separable functions. We present a simple and versatile procedure to establish the orthogonality through Gram-Schmidt (GS) orthogonalization, which is applicable to any prototype. We show that different AMP-type algorithms, such as expectation propagation (EP), turbo, AMP and OAMP, can be unified under the orthogonal principle. The simplicity and generality of OAMP provide efficient solutions for estimation problems beyond the classical linear models. As an example, we study the optimization of OAMP via the GS model and GS orthogonalization. More related applications will be discussed in a companion paper where new algorithms are developed for problems with multiple constraints and multiple measurement variables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3262304</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4933-5093</orcidid><orcidid>https://orcid.org/0000-0002-4589-4138</orcidid><orcidid>https://orcid.org/0000-0002-2441-588X</orcidid><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4909-8208</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2023-05, Vol.71 (5), p.1-1 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_10082977 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms approximate message passing (AMP) belief propagation (BP) Electronic mail Errors Expectation propagation (EP) Haar matrices Iterative methods Linear systems Message passing Optimization Orthogonality Parameter estimation Principles Program processors Sensors Signal processing algorithms state evolution turbo unified framework vector AMP (VAMP) |
title | On OAMP: Impact of the Orthogonal Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20OAMP:%20Impact%20of%20the%20Orthogonal%20Principle&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Liu,%20Lei&rft.date=2023-05-01&rft.volume=71&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3262304&rft_dat=%3Cproquest_RIE%3E2814541222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814541222&rft_id=info:pmid/&rft_ieee_id=10082977&rfr_iscdi=true |