A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection
As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 498 |
creator | Imran, Zaria Grooby, Ethan Malgi, Vinayaka Vivekananda Sitaula, Chiranjibi Aryal, Sunil Marzbanrad, Faezeh |
description | As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results. |
doi_str_mv | 10.22489/CinC.2022.310 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10081890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081890</ieee_id><sourcerecordid>10081890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-45c7702646a0ea92996f407ae0af25d66b5f6f010afae644bb4fb733aba0a0373</originalsourceid><addsrcrecordid>eNotjEtLAzEUhaMgWGq3rlzkD0y9eUweyzpaK1TcKLiy3OncSKSdKcnMwn9vwJ7N4fAdPsZuBSyl1M7fN7FvlhKkXCoBF2zhrXeqBgXgLVyymVSyrpyzn9dskfMPlNTWeeNm7GvF11OOQ8-HwDfYd_uEYaSOrwnHKVH1gLmsAvgj0YlvCVMf-2_eHDDnGCKlzMOQ-KaAkb9O6Tilch1pPxbrDbsKeMi0OPecfayf3ptNtX17fmlW2yoK4cdK13trQRptEAi99N4EDRYJMMi6M6atgwkgykQyWretDq1VClsEBGXVnN39eyMR7U4pHjH97gSAE86D-gN9AlQo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Imran, Zaria ; Grooby, Ethan ; Malgi, Vinayaka Vivekananda ; Sitaula, Chiranjibi ; Aryal, Sunil ; Marzbanrad, Faezeh</creator><creatorcontrib>Imran, Zaria ; Grooby, Ethan ; Malgi, Vinayaka Vivekananda ; Sitaula, Chiranjibi ; Aryal, Sunil ; Marzbanrad, Faezeh</creatorcontrib><description>As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350300970</identifier><identifier>DOI: 10.22489/CinC.2022.310</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Boosting ; Cepstrum ; Costs ; Deep learning ; Feature extraction ; Heart ; Pediatrics</subject><ispartof>2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27904</link.rule.ids></links><search><creatorcontrib>Imran, Zaria</creatorcontrib><creatorcontrib>Grooby, Ethan</creatorcontrib><creatorcontrib>Malgi, Vinayaka Vivekananda</creatorcontrib><creatorcontrib>Sitaula, Chiranjibi</creatorcontrib><creatorcontrib>Aryal, Sunil</creatorcontrib><creatorcontrib>Marzbanrad, Faezeh</creatorcontrib><title>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</title><title>2022 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.</description><subject>Boosting</subject><subject>Cepstrum</subject><subject>Costs</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Pediatrics</subject><issn>2325-887X</issn><isbn>9798350300970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLAzEUhaMgWGq3rlzkD0y9eUweyzpaK1TcKLiy3OncSKSdKcnMwn9vwJ7N4fAdPsZuBSyl1M7fN7FvlhKkXCoBF2zhrXeqBgXgLVyymVSyrpyzn9dskfMPlNTWeeNm7GvF11OOQ8-HwDfYd_uEYaSOrwnHKVH1gLmsAvgj0YlvCVMf-2_eHDDnGCKlzMOQ-KaAkb9O6Tilch1pPxbrDbsKeMi0OPecfayf3ptNtX17fmlW2yoK4cdK13trQRptEAi99N4EDRYJMMi6M6atgwkgykQyWretDq1VClsEBGXVnN39eyMR7U4pHjH97gSAE86D-gN9AlQo</recordid><startdate>20220904</startdate><enddate>20220904</enddate><creator>Imran, Zaria</creator><creator>Grooby, Ethan</creator><creator>Malgi, Vinayaka Vivekananda</creator><creator>Sitaula, Chiranjibi</creator><creator>Aryal, Sunil</creator><creator>Marzbanrad, Faezeh</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220904</creationdate><title>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</title><author>Imran, Zaria ; Grooby, Ethan ; Malgi, Vinayaka Vivekananda ; Sitaula, Chiranjibi ; Aryal, Sunil ; Marzbanrad, Faezeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-45c7702646a0ea92996f407ae0af25d66b5f6f010afae644bb4fb733aba0a0373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boosting</topic><topic>Cepstrum</topic><topic>Costs</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Pediatrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Imran, Zaria</creatorcontrib><creatorcontrib>Grooby, Ethan</creatorcontrib><creatorcontrib>Malgi, Vinayaka Vivekananda</creatorcontrib><creatorcontrib>Sitaula, Chiranjibi</creatorcontrib><creatorcontrib>Aryal, Sunil</creatorcontrib><creatorcontrib>Marzbanrad, Faezeh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imran, Zaria</au><au>Grooby, Ethan</au><au>Malgi, Vinayaka Vivekananda</au><au>Sitaula, Chiranjibi</au><au>Aryal, Sunil</au><au>Marzbanrad, Faezeh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</atitle><btitle>2022 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2022-09-04</date><risdate>2022</risdate><volume>498</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350300970</eisbn><abstract>As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2022.310</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2325-887X |
ispartof | 2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4 |
issn | 2325-887X |
language | eng |
recordid | cdi_ieee_primary_10081890 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Boosting Cepstrum Costs Deep learning Feature extraction Heart Pediatrics |
title | A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Fusion%20of%20Handcrafted%20Feature-Based%20and%20Deep%20Learning%20Classifiers%20for%20Heart%20Murmur%20Detection&rft.btitle=2022%20Computing%20in%20Cardiology%20(CinC)&rft.au=Imran,%20Zaria&rft.date=2022-09-04&rft.volume=498&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2022.310&rft_dat=%3Cieee%3E10081890%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350300970&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10081890&rfr_iscdi=true |