A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection

As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Imran, Zaria, Grooby, Ethan, Malgi, Vinayaka Vivekananda, Sitaula, Chiranjibi, Aryal, Sunil, Marzbanrad, Faezeh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 498
creator Imran, Zaria
Grooby, Ethan
Malgi, Vinayaka Vivekananda
Sitaula, Chiranjibi
Aryal, Sunil
Marzbanrad, Faezeh
description As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.
doi_str_mv 10.22489/CinC.2022.310
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10081890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081890</ieee_id><sourcerecordid>10081890</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-45c7702646a0ea92996f407ae0af25d66b5f6f010afae644bb4fb733aba0a0373</originalsourceid><addsrcrecordid>eNotjEtLAzEUhaMgWGq3rlzkD0y9eUweyzpaK1TcKLiy3OncSKSdKcnMwn9vwJ7N4fAdPsZuBSyl1M7fN7FvlhKkXCoBF2zhrXeqBgXgLVyymVSyrpyzn9dskfMPlNTWeeNm7GvF11OOQ8-HwDfYd_uEYaSOrwnHKVH1gLmsAvgj0YlvCVMf-2_eHDDnGCKlzMOQ-KaAkb9O6Tilch1pPxbrDbsKeMi0OPecfayf3ptNtX17fmlW2yoK4cdK13trQRptEAi99N4EDRYJMMi6M6atgwkgykQyWretDq1VClsEBGXVnN39eyMR7U4pHjH97gSAE86D-gN9AlQo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Imran, Zaria ; Grooby, Ethan ; Malgi, Vinayaka Vivekananda ; Sitaula, Chiranjibi ; Aryal, Sunil ; Marzbanrad, Faezeh</creator><creatorcontrib>Imran, Zaria ; Grooby, Ethan ; Malgi, Vinayaka Vivekananda ; Sitaula, Chiranjibi ; Aryal, Sunil ; Marzbanrad, Faezeh</creatorcontrib><description>As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350300970</identifier><identifier>DOI: 10.22489/CinC.2022.310</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Boosting ; Cepstrum ; Costs ; Deep learning ; Feature extraction ; Heart ; Pediatrics</subject><ispartof>2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27904</link.rule.ids></links><search><creatorcontrib>Imran, Zaria</creatorcontrib><creatorcontrib>Grooby, Ethan</creatorcontrib><creatorcontrib>Malgi, Vinayaka Vivekananda</creatorcontrib><creatorcontrib>Sitaula, Chiranjibi</creatorcontrib><creatorcontrib>Aryal, Sunil</creatorcontrib><creatorcontrib>Marzbanrad, Faezeh</creatorcontrib><title>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</title><title>2022 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.</description><subject>Boosting</subject><subject>Cepstrum</subject><subject>Costs</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Pediatrics</subject><issn>2325-887X</issn><isbn>9798350300970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLAzEUhaMgWGq3rlzkD0y9eUweyzpaK1TcKLiy3OncSKSdKcnMwn9vwJ7N4fAdPsZuBSyl1M7fN7FvlhKkXCoBF2zhrXeqBgXgLVyymVSyrpyzn9dskfMPlNTWeeNm7GvF11OOQ8-HwDfYd_uEYaSOrwnHKVH1gLmsAvgj0YlvCVMf-2_eHDDnGCKlzMOQ-KaAkb9O6Tilch1pPxbrDbsKeMi0OPecfayf3ptNtX17fmlW2yoK4cdK13trQRptEAi99N4EDRYJMMi6M6atgwkgykQyWretDq1VClsEBGXVnN39eyMR7U4pHjH97gSAE86D-gN9AlQo</recordid><startdate>20220904</startdate><enddate>20220904</enddate><creator>Imran, Zaria</creator><creator>Grooby, Ethan</creator><creator>Malgi, Vinayaka Vivekananda</creator><creator>Sitaula, Chiranjibi</creator><creator>Aryal, Sunil</creator><creator>Marzbanrad, Faezeh</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220904</creationdate><title>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</title><author>Imran, Zaria ; Grooby, Ethan ; Malgi, Vinayaka Vivekananda ; Sitaula, Chiranjibi ; Aryal, Sunil ; Marzbanrad, Faezeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-45c7702646a0ea92996f407ae0af25d66b5f6f010afae644bb4fb733aba0a0373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boosting</topic><topic>Cepstrum</topic><topic>Costs</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Pediatrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Imran, Zaria</creatorcontrib><creatorcontrib>Grooby, Ethan</creatorcontrib><creatorcontrib>Malgi, Vinayaka Vivekananda</creatorcontrib><creatorcontrib>Sitaula, Chiranjibi</creatorcontrib><creatorcontrib>Aryal, Sunil</creatorcontrib><creatorcontrib>Marzbanrad, Faezeh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imran, Zaria</au><au>Grooby, Ethan</au><au>Malgi, Vinayaka Vivekananda</au><au>Sitaula, Chiranjibi</au><au>Aryal, Sunil</au><au>Marzbanrad, Faezeh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection</atitle><btitle>2022 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2022-09-04</date><risdate>2022</risdate><volume>498</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350300970</eisbn><abstract>As part of George B. Moody Physionet Challenge 2022, our team Melbourne Kangas, proposed an algorithm for identifying abnormal heart sounds from paediatric phono-cardiograms (PCGs). We developed a Deep Learning (DL) approach and a handcrafted feature-based approach. The DL classifier was based on bidirectional long-short-term-memory and Mel-frequency cepstrum coefficients from raw PCG signals. The feature-based approach used non-negative matrix factorisation to denoise PCG signals and then extracted the features based on the whole and segmented recordings, followed by feature selection. A random under-sampling boosting classifier for murmur classification and robust boosting classifier for outcome classification were given the subset of features. The feature-based performed better than the DL classifiers on the validation set. The feature-based classifier received a weighted accuracy of 0.632 (29th out of 41 teams) and a challenge cost of 11,735 (3rd out of 39 teams) on the test set. Decision fusion of the two approaches decreased 10-fold cross-validation results.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2022.310</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_10081890
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Boosting
Cepstrum
Costs
Deep learning
Feature extraction
Heart
Pediatrics
title A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Fusion%20of%20Handcrafted%20Feature-Based%20and%20Deep%20Learning%20Classifiers%20for%20Heart%20Murmur%20Detection&rft.btitle=2022%20Computing%20in%20Cardiology%20(CinC)&rft.au=Imran,%20Zaria&rft.date=2022-09-04&rft.volume=498&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2022.310&rft_dat=%3Cieee%3E10081890%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350300970&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10081890&rfr_iscdi=true