Robustness of Residual Network in Predicting PR Interval Trained Using Noisy Labels

The PR interval represents the time required from the electrical impulse to advance from the atrium to AV node and His-Purkinje system until the ventricular myocardium begins to depolarize. PR interval prolongation has been associated with significant increases in atrial fibrillation, heart failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao, Loc, Ghanbari, Hamid, Farzaneh, Negar, Ward, Kevin R, Ansari, Sardar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 498
creator Cao, Loc
Ghanbari, Hamid
Farzaneh, Negar
Ward, Kevin R
Ansari, Sardar
description The PR interval represents the time required from the electrical impulse to advance from the atrium to AV node and His-Purkinje system until the ventricular myocardium begins to depolarize. PR interval prolongation has been associated with significant increases in atrial fibrillation, heart failure and mortality. Over the past years, multiple deep learning models have been proposed to interpret electrocardiogram (ECG) signals. Despite initial success, these models are often trained and validated using datasets that contain partially incorrect labels. These "noisy" labels exist because of the way the annotated data was collected and pose challenges for model training and validation. As a result, a residual neural network (ResNet), trained on noisy data, was proposed to estimate PR intervals. In addition, an electrophysiologist performed a blinded manual adjudication on a stratified sample to validate the accuracy of both the model and the noisy labels. The conclusion is that a ResNet trained on noisy data can correctly estimate PR intervals and outperforms the noisy labels it was trained on.
doi_str_mv 10.22489/CinC.2022.338
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10081755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081755</ieee_id><sourcerecordid>10081755</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1598-b392e3b796273f9f23746559ff955223d559a8d3e8c6541013cb51a8dc7b0a133</originalsourceid><addsrcrecordid>eNotjE1LxDAYhKMguKy9evKQP9Ca5G2a5CjFj4WyLnUXvC1J-0aitZWmq-y_34rOZYZnhiHkmrNMiFyb2zL0ZSaYEBmAPiOJUUaDZMCYUeycLAQImWqtXi9JEuM7myWVNoVekJd6cIc49RgjHTytMYb2YDu6xulnGD9o6OlmxDY0U-jf6Kamq37C8XtebEcbemzpLv426yHEI62swy5ekQtvu4jJvy_J7uF-Wz6l1fPjqryr0sCl0akDIxCcMoVQ4I0XoPJCSuO9kVIIaOdsdQuom0LmnHFonOQzaZRjlgMsyc3fb0DE_dcYPu143HPGNFdSwgm120-P</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robustness of Residual Network in Predicting PR Interval Trained Using Noisy Labels</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cao, Loc ; Ghanbari, Hamid ; Farzaneh, Negar ; Ward, Kevin R ; Ansari, Sardar</creator><creatorcontrib>Cao, Loc ; Ghanbari, Hamid ; Farzaneh, Negar ; Ward, Kevin R ; Ansari, Sardar</creatorcontrib><description>The PR interval represents the time required from the electrical impulse to advance from the atrium to AV node and His-Purkinje system until the ventricular myocardium begins to depolarize. PR interval prolongation has been associated with significant increases in atrial fibrillation, heart failure and mortality. Over the past years, multiple deep learning models have been proposed to interpret electrocardiogram (ECG) signals. Despite initial success, these models are often trained and validated using datasets that contain partially incorrect labels. These "noisy" labels exist because of the way the annotated data was collected and pose challenges for model training and validation. As a result, a residual neural network (ResNet), trained on noisy data, was proposed to estimate PR intervals. In addition, an electrophysiologist performed a blinded manual adjudication on a stratified sample to validate the accuracy of both the model and the noisy labels. The conclusion is that a ResNet trained on noisy data can correctly estimate PR intervals and outperforms the noisy labels it was trained on.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350300970</identifier><identifier>DOI: 10.22489/CinC.2022.338</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Computational modeling ; Data models ; Deep learning ; Electrocardiography ; Electrophysiology ; Myocardium ; Training</subject><ispartof>2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4050,4051,27925</link.rule.ids></links><search><creatorcontrib>Cao, Loc</creatorcontrib><creatorcontrib>Ghanbari, Hamid</creatorcontrib><creatorcontrib>Farzaneh, Negar</creatorcontrib><creatorcontrib>Ward, Kevin R</creatorcontrib><creatorcontrib>Ansari, Sardar</creatorcontrib><title>Robustness of Residual Network in Predicting PR Interval Trained Using Noisy Labels</title><title>2022 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>The PR interval represents the time required from the electrical impulse to advance from the atrium to AV node and His-Purkinje system until the ventricular myocardium begins to depolarize. PR interval prolongation has been associated with significant increases in atrial fibrillation, heart failure and mortality. Over the past years, multiple deep learning models have been proposed to interpret electrocardiogram (ECG) signals. Despite initial success, these models are often trained and validated using datasets that contain partially incorrect labels. These "noisy" labels exist because of the way the annotated data was collected and pose challenges for model training and validation. As a result, a residual neural network (ResNet), trained on noisy data, was proposed to estimate PR intervals. In addition, an electrophysiologist performed a blinded manual adjudication on a stratified sample to validate the accuracy of both the model and the noisy labels. The conclusion is that a ResNet trained on noisy data can correctly estimate PR intervals and outperforms the noisy labels it was trained on.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Electrocardiography</subject><subject>Electrophysiology</subject><subject>Myocardium</subject><subject>Training</subject><issn>2325-887X</issn><isbn>9798350300970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1LxDAYhKMguKy9evKQP9Ca5G2a5CjFj4WyLnUXvC1J-0aitZWmq-y_34rOZYZnhiHkmrNMiFyb2zL0ZSaYEBmAPiOJUUaDZMCYUeycLAQImWqtXi9JEuM7myWVNoVekJd6cIc49RgjHTytMYb2YDu6xulnGD9o6OlmxDY0U-jf6Kamq37C8XtebEcbemzpLv426yHEI62swy5ekQtvu4jJvy_J7uF-Wz6l1fPjqryr0sCl0akDIxCcMoVQ4I0XoPJCSuO9kVIIaOdsdQuom0LmnHFonOQzaZRjlgMsyc3fb0DE_dcYPu143HPGNFdSwgm120-P</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cao, Loc</creator><creator>Ghanbari, Hamid</creator><creator>Farzaneh, Negar</creator><creator>Ward, Kevin R</creator><creator>Ansari, Sardar</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2022</creationdate><title>Robustness of Residual Network in Predicting PR Interval Trained Using Noisy Labels</title><author>Cao, Loc ; Ghanbari, Hamid ; Farzaneh, Negar ; Ward, Kevin R ; Ansari, Sardar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1598-b392e3b796273f9f23746559ff955223d559a8d3e8c6541013cb51a8dc7b0a133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Electrocardiography</topic><topic>Electrophysiology</topic><topic>Myocardium</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Loc</creatorcontrib><creatorcontrib>Ghanbari, Hamid</creatorcontrib><creatorcontrib>Farzaneh, Negar</creatorcontrib><creatorcontrib>Ward, Kevin R</creatorcontrib><creatorcontrib>Ansari, Sardar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Loc</au><au>Ghanbari, Hamid</au><au>Farzaneh, Negar</au><au>Ward, Kevin R</au><au>Ansari, Sardar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robustness of Residual Network in Predicting PR Interval Trained Using Noisy Labels</atitle><btitle>2022 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2022</date><risdate>2022</risdate><volume>498</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350300970</eisbn><abstract>The PR interval represents the time required from the electrical impulse to advance from the atrium to AV node and His-Purkinje system until the ventricular myocardium begins to depolarize. PR interval prolongation has been associated with significant increases in atrial fibrillation, heart failure and mortality. Over the past years, multiple deep learning models have been proposed to interpret electrocardiogram (ECG) signals. Despite initial success, these models are often trained and validated using datasets that contain partially incorrect labels. These "noisy" labels exist because of the way the annotated data was collected and pose challenges for model training and validation. As a result, a residual neural network (ResNet), trained on noisy data, was proposed to estimate PR intervals. In addition, an electrophysiologist performed a blinded manual adjudication on a stratified sample to validate the accuracy of both the model and the noisy labels. The conclusion is that a ResNet trained on noisy data can correctly estimate PR intervals and outperforms the noisy labels it was trained on.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2022.338</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_10081755
source EZB-FREE-00999 freely available EZB journals
subjects Computational modeling
Data models
Deep learning
Electrocardiography
Electrophysiology
Myocardium
Training
title Robustness of Residual Network in Predicting PR Interval Trained Using Noisy Labels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robustness%20of%20Residual%20Network%20in%20Predicting%20PR%20Interval%20Trained%20Using%20Noisy%20Labels&rft.btitle=2022%20Computing%20in%20Cardiology%20(CinC)&rft.au=Cao,%20Loc&rft.date=2022&rft.volume=498&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2022.338&rft_dat=%3Cieee%3E10081755%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350300970&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10081755&rfr_iscdi=true