Omecamtiv Mecarbil Improves Contraction Behaviour in a 3D Electromechanical Tissue Model of Heart Failure

Inotropic drugs, such as Omecamtiv Mecarbil (OM), are a promising treatment option for patients with heart failure with reduced ejection fraction. However, there are limited computational models available of fully coupled electromechanics (EM) and OM. We present a 3D EM model to simulate inotropic d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: van Herck, Ilsbeth, Mora, Maria Teresa, Llopis-Lorente, Jordi, Finsberg, Henrik, Daversin-Catty, Cecile, Saiz, Javier, Trenor, Beatriz, Arevalo, Hermenegild, Wall, Samuel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 498
creator van Herck, Ilsbeth
Mora, Maria Teresa
Llopis-Lorente, Jordi
Finsberg, Henrik
Daversin-Catty, Cecile
Saiz, Javier
Trenor, Beatriz
Arevalo, Hermenegild
Wall, Samuel
description Inotropic drugs, such as Omecamtiv Mecarbil (OM), are a promising treatment option for patients with heart failure with reduced ejection fraction. However, there are limited computational models available of fully coupled electromechanics (EM) and OM. We present a 3D EM model to simulate inotropic drug effects to assess pharmacological mechanisms and effects on human cardiac tissue. This fully coupled 3D EM open-source solver (SimCardEMS) was used to simulate healthy and failing tissue slabs. A model of OM behaviour was created by using experimental data to parametrize the cell model to replicate stabilisation of the pre-powerstroke state of myosin. The OM model replicates experimentally observed concentration dependent drug effects such as increased active tension with minimal effect on calcium transient. Therapeutic concentration of OM (0.2 μM) increased active tension by 33% in heart failure tissue. Total displacement was reduced in heart failure, but was partially recovered in the presence of 0.2 μM OM. However, the characteristic delay in time to peak contraction was not reflected in these results. These simulations enable detailed assessment of drug mechanisms and indicate that the model of OM in tissue EM requires further development to better represent the pharmacological effect.
doi_str_mv 10.22489/CinC.2022.033
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10081663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081663</ieee_id><sourcerecordid>10081663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2043-587ae1096e13283790ea8eb77d2f107dab72f28b0b106fb5f21ae1dc6df262c93</originalsourceid><addsrcrecordid>eNotjEtPAjEUhauJiQTZunLRPzB4e8v0sdQRhATCBhN3pNO5DTXzIJ2BxH_vJHI251uc7zD2LGCOuDD2tYhtMUdAnIOUd2xmtTUyBwlgNdyzCUrMM2P09yOb9f0PjMm1scpMWNw35F0zxCvfjZDKWPNNc07dlXpedO2QnB9i1_J3Orlr7C6Jx5Y7Lj_4siY_pG70T66N3tX8EPv-QnzXVVTzLvA1uTTwlYv1JdETewiu7ml26yn7Wi0PxTrb7j83xds28wgLmeVGOxJgFQmJRmoL5AyVWlcYBOjKlRoDmhJKASqUeUAx7iuvqoAKvZVT9vL_G4noeE6xcen3KACMUErKPzeGWGk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Omecamtiv Mecarbil Improves Contraction Behaviour in a 3D Electromechanical Tissue Model of Heart Failure</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>van Herck, Ilsbeth ; Mora, Maria Teresa ; Llopis-Lorente, Jordi ; Finsberg, Henrik ; Daversin-Catty, Cecile ; Saiz, Javier ; Trenor, Beatriz ; Arevalo, Hermenegild ; Wall, Samuel</creator><creatorcontrib>van Herck, Ilsbeth ; Mora, Maria Teresa ; Llopis-Lorente, Jordi ; Finsberg, Henrik ; Daversin-Catty, Cecile ; Saiz, Javier ; Trenor, Beatriz ; Arevalo, Hermenegild ; Wall, Samuel</creatorcontrib><description>Inotropic drugs, such as Omecamtiv Mecarbil (OM), are a promising treatment option for patients with heart failure with reduced ejection fraction. However, there are limited computational models available of fully coupled electromechanics (EM) and OM. We present a 3D EM model to simulate inotropic drug effects to assess pharmacological mechanisms and effects on human cardiac tissue. This fully coupled 3D EM open-source solver (SimCardEMS) was used to simulate healthy and failing tissue slabs. A model of OM behaviour was created by using experimental data to parametrize the cell model to replicate stabilisation of the pre-powerstroke state of myosin. The OM model replicates experimentally observed concentration dependent drug effects such as increased active tension with minimal effect on calcium transient. Therapeutic concentration of OM (0.2 μM) increased active tension by 33% in heart failure tissue. Total displacement was reduced in heart failure, but was partially recovered in the presence of 0.2 μM OM. However, the characteristic delay in time to peak contraction was not reflected in these results. These simulations enable detailed assessment of drug mechanisms and indicate that the model of OM in tissue EM requires further development to better represent the pharmacological effect.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350300970</identifier><identifier>DOI: 10.22489/CinC.2022.033</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Cardiac tissue ; Computational modeling ; Data models ; Delays ; Drugs ; Solid modeling ; Three-dimensional displays</subject><ispartof>2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2043-587ae1096e13283790ea8eb77d2f107dab72f28b0b106fb5f21ae1dc6df262c93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,4036,4037,27902</link.rule.ids></links><search><creatorcontrib>van Herck, Ilsbeth</creatorcontrib><creatorcontrib>Mora, Maria Teresa</creatorcontrib><creatorcontrib>Llopis-Lorente, Jordi</creatorcontrib><creatorcontrib>Finsberg, Henrik</creatorcontrib><creatorcontrib>Daversin-Catty, Cecile</creatorcontrib><creatorcontrib>Saiz, Javier</creatorcontrib><creatorcontrib>Trenor, Beatriz</creatorcontrib><creatorcontrib>Arevalo, Hermenegild</creatorcontrib><creatorcontrib>Wall, Samuel</creatorcontrib><title>Omecamtiv Mecarbil Improves Contraction Behaviour in a 3D Electromechanical Tissue Model of Heart Failure</title><title>2022 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>Inotropic drugs, such as Omecamtiv Mecarbil (OM), are a promising treatment option for patients with heart failure with reduced ejection fraction. However, there are limited computational models available of fully coupled electromechanics (EM) and OM. We present a 3D EM model to simulate inotropic drug effects to assess pharmacological mechanisms and effects on human cardiac tissue. This fully coupled 3D EM open-source solver (SimCardEMS) was used to simulate healthy and failing tissue slabs. A model of OM behaviour was created by using experimental data to parametrize the cell model to replicate stabilisation of the pre-powerstroke state of myosin. The OM model replicates experimentally observed concentration dependent drug effects such as increased active tension with minimal effect on calcium transient. Therapeutic concentration of OM (0.2 μM) increased active tension by 33% in heart failure tissue. Total displacement was reduced in heart failure, but was partially recovered in the presence of 0.2 μM OM. However, the characteristic delay in time to peak contraction was not reflected in these results. These simulations enable detailed assessment of drug mechanisms and indicate that the model of OM in tissue EM requires further development to better represent the pharmacological effect.</description><subject>Cardiac tissue</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Delays</subject><subject>Drugs</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><issn>2325-887X</issn><isbn>9798350300970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtPAjEUhauJiQTZunLRPzB4e8v0sdQRhATCBhN3pNO5DTXzIJ2BxH_vJHI251uc7zD2LGCOuDD2tYhtMUdAnIOUd2xmtTUyBwlgNdyzCUrMM2P09yOb9f0PjMm1scpMWNw35F0zxCvfjZDKWPNNc07dlXpedO2QnB9i1_J3Orlr7C6Jx5Y7Lj_4siY_pG70T66N3tX8EPv-QnzXVVTzLvA1uTTwlYv1JdETewiu7ml26yn7Wi0PxTrb7j83xds28wgLmeVGOxJgFQmJRmoL5AyVWlcYBOjKlRoDmhJKASqUeUAx7iuvqoAKvZVT9vL_G4noeE6xcen3KACMUErKPzeGWGk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>van Herck, Ilsbeth</creator><creator>Mora, Maria Teresa</creator><creator>Llopis-Lorente, Jordi</creator><creator>Finsberg, Henrik</creator><creator>Daversin-Catty, Cecile</creator><creator>Saiz, Javier</creator><creator>Trenor, Beatriz</creator><creator>Arevalo, Hermenegild</creator><creator>Wall, Samuel</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2022</creationdate><title>Omecamtiv Mecarbil Improves Contraction Behaviour in a 3D Electromechanical Tissue Model of Heart Failure</title><author>van Herck, Ilsbeth ; Mora, Maria Teresa ; Llopis-Lorente, Jordi ; Finsberg, Henrik ; Daversin-Catty, Cecile ; Saiz, Javier ; Trenor, Beatriz ; Arevalo, Hermenegild ; Wall, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2043-587ae1096e13283790ea8eb77d2f107dab72f28b0b106fb5f21ae1dc6df262c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cardiac tissue</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Delays</topic><topic>Drugs</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>van Herck, Ilsbeth</creatorcontrib><creatorcontrib>Mora, Maria Teresa</creatorcontrib><creatorcontrib>Llopis-Lorente, Jordi</creatorcontrib><creatorcontrib>Finsberg, Henrik</creatorcontrib><creatorcontrib>Daversin-Catty, Cecile</creatorcontrib><creatorcontrib>Saiz, Javier</creatorcontrib><creatorcontrib>Trenor, Beatriz</creatorcontrib><creatorcontrib>Arevalo, Hermenegild</creatorcontrib><creatorcontrib>Wall, Samuel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Herck, Ilsbeth</au><au>Mora, Maria Teresa</au><au>Llopis-Lorente, Jordi</au><au>Finsberg, Henrik</au><au>Daversin-Catty, Cecile</au><au>Saiz, Javier</au><au>Trenor, Beatriz</au><au>Arevalo, Hermenegild</au><au>Wall, Samuel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Omecamtiv Mecarbil Improves Contraction Behaviour in a 3D Electromechanical Tissue Model of Heart Failure</atitle><btitle>2022 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2022</date><risdate>2022</risdate><volume>498</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350300970</eisbn><abstract>Inotropic drugs, such as Omecamtiv Mecarbil (OM), are a promising treatment option for patients with heart failure with reduced ejection fraction. However, there are limited computational models available of fully coupled electromechanics (EM) and OM. We present a 3D EM model to simulate inotropic drug effects to assess pharmacological mechanisms and effects on human cardiac tissue. This fully coupled 3D EM open-source solver (SimCardEMS) was used to simulate healthy and failing tissue slabs. A model of OM behaviour was created by using experimental data to parametrize the cell model to replicate stabilisation of the pre-powerstroke state of myosin. The OM model replicates experimentally observed concentration dependent drug effects such as increased active tension with minimal effect on calcium transient. Therapeutic concentration of OM (0.2 μM) increased active tension by 33% in heart failure tissue. Total displacement was reduced in heart failure, but was partially recovered in the presence of 0.2 μM OM. However, the characteristic delay in time to peak contraction was not reflected in these results. These simulations enable detailed assessment of drug mechanisms and indicate that the model of OM in tissue EM requires further development to better represent the pharmacological effect.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2022.033</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_10081663
source EZB-FREE-00999 freely available EZB journals
subjects Cardiac tissue
Computational modeling
Data models
Delays
Drugs
Solid modeling
Three-dimensional displays
title Omecamtiv Mecarbil Improves Contraction Behaviour in a 3D Electromechanical Tissue Model of Heart Failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Omecamtiv%20Mecarbil%20Improves%20Contraction%20Behaviour%20in%20a%203D%20Electromechanical%20Tissue%20Model%20of%20Heart%20Failure&rft.btitle=2022%20Computing%20in%20Cardiology%20(CinC)&rft.au=van%20Herck,%20Ilsbeth&rft.date=2022&rft.volume=498&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2022.033&rft_dat=%3Cieee%3E10081663%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350300970&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10081663&rfr_iscdi=true