Highly Robust Complex Covariance Estimators with Applications to Sensor Array Processing

Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of signal processing 2023-01, Vol.4, p.1-18
Hauptverfasser: Fishbone, Justin A., Mili, Lamine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 1
container_title IEEE open journal of signal processing
container_volume 4
creator Fishbone, Justin A.
Mili, Lamine
description Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as M -estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate S -estimators. The paper extends multivariate S estimation theory to the complex-valued domain. The theoretical performances of S -estimators are explored and compared with M -estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.
doi_str_mv 10.1109/OJSP.2023.3261806
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10081068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081068</ieee_id><doaj_id>oai_doaj_org_article_81d1790f3cdc46ecae875e9f8c28918a</doaj_id><sourcerecordid>2806222199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-aafd54f3f22a231354ed965afed7d2d721746a11e269fc559619865803f13b783</originalsourceid><addsrcrecordid>eNpNUdFqGzEQPEoLDUk-INAHQZ_tald3OunRmLRJCSTULeRNKLqVI3M5XSU5if--5zoEP-0yzMwOO1V1AXwOwPW325-ruzlyFHOBEhSXH6oTlHU9A4H48Wj_XJ3nvOGcYwMwASfV_VVYP_Y79is-bHNhy_g09vQ6zWebgh0csctcwpMtMWX2EsojW4xjH5wtIQ6ZlchWNOSY2CIlu2N3KTrKOQzrs-qTt32m87d5Wv35fvl7eTW7uf1xvVzczFzNRZlZ67um9sIjWhQgmpo6LRvrqWs77FqEtpYWgFBq75pGS9BKNooLD-KhVeK0uj74dtFuzJimrGlnog3mPxDT2thUguvJKOig1dwL17lakrOk2oa0Vw6VBmUnr68HrzHFv1vKxWziNg1TfIPTVxERtJ5YcGC5FHNO5N-vAjf7Psy-D7Pvw7z1MWm-HDSBiI74XAGXSvwD-muGBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806222199</pqid></control><display><type>article</type><title>Highly Robust Complex Covariance Estimators with Applications to Sensor Array Processing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fishbone, Justin A. ; Mili, Lamine</creator><creatorcontrib>Fishbone, Justin A. ; Mili, Lamine</creatorcontrib><description>Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as M -estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate S -estimators. The paper extends multivariate S estimation theory to the complex-valued domain. The theoretical performances of S -estimators are explored and compared with M -estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.</description><identifier>ISSN: 2644-1322</identifier><identifier>EISSN: 2644-1322</identifier><identifier>DOI: 10.1109/OJSP.2023.3261806</identifier><identifier>CODEN: IOJSAF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Beamforming ; Complex elliptically symmetric distribution ; complex-valued S-estimator ; covariance and shape matrix estimation ; Covariance matrices ; Covariance matrix ; Direction of arrival ; Electric breakdown ; Estimation ; Estimators ; Lenses ; Multivariate analysis ; Outliers (statistics) ; Probability density function ; robust estimation of multivariate location and scatter ; Robustness ; Sensor arrays ; Signal classification ; Signal processing ; Sq-estimator ; Symmetric matrices</subject><ispartof>IEEE open journal of signal processing, 2023-01, Vol.4, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-aafd54f3f22a231354ed965afed7d2d721746a11e269fc559619865803f13b783</citedby><cites>FETCH-LOGICAL-c403t-aafd54f3f22a231354ed965afed7d2d721746a11e269fc559619865803f13b783</cites><orcidid>0000-0003-2704-9026 ; 0000-0001-6134-3945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10081068$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fishbone, Justin A.</creatorcontrib><creatorcontrib>Mili, Lamine</creatorcontrib><title>Highly Robust Complex Covariance Estimators with Applications to Sensor Array Processing</title><title>IEEE open journal of signal processing</title><addtitle>OJSP</addtitle><description>Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as M -estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate S -estimators. The paper extends multivariate S estimation theory to the complex-valued domain. The theoretical performances of S -estimators are explored and compared with M -estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.</description><subject>Algorithms</subject><subject>Beamforming</subject><subject>Complex elliptically symmetric distribution</subject><subject>complex-valued S-estimator</subject><subject>covariance and shape matrix estimation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Direction of arrival</subject><subject>Electric breakdown</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Lenses</subject><subject>Multivariate analysis</subject><subject>Outliers (statistics)</subject><subject>Probability density function</subject><subject>robust estimation of multivariate location and scatter</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Sq-estimator</subject><subject>Symmetric matrices</subject><issn>2644-1322</issn><issn>2644-1322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFqGzEQPEoLDUk-INAHQZ_tald3OunRmLRJCSTULeRNKLqVI3M5XSU5if--5zoEP-0yzMwOO1V1AXwOwPW325-ruzlyFHOBEhSXH6oTlHU9A4H48Wj_XJ3nvOGcYwMwASfV_VVYP_Y79is-bHNhy_g09vQ6zWebgh0csctcwpMtMWX2EsojW4xjH5wtIQ6ZlchWNOSY2CIlu2N3KTrKOQzrs-qTt32m87d5Wv35fvl7eTW7uf1xvVzczFzNRZlZ67um9sIjWhQgmpo6LRvrqWs77FqEtpYWgFBq75pGS9BKNooLD-KhVeK0uj74dtFuzJimrGlnog3mPxDT2thUguvJKOig1dwL17lakrOk2oa0Vw6VBmUnr68HrzHFv1vKxWziNg1TfIPTVxERtJ5YcGC5FHNO5N-vAjf7Psy-D7Pvw7z1MWm-HDSBiI74XAGXSvwD-muGBg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Fishbone, Justin A.</creator><creator>Mili, Lamine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2704-9026</orcidid><orcidid>https://orcid.org/0000-0001-6134-3945</orcidid></search><sort><creationdate>20230101</creationdate><title>Highly Robust Complex Covariance Estimators with Applications to Sensor Array Processing</title><author>Fishbone, Justin A. ; Mili, Lamine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-aafd54f3f22a231354ed965afed7d2d721746a11e269fc559619865803f13b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Beamforming</topic><topic>Complex elliptically symmetric distribution</topic><topic>complex-valued S-estimator</topic><topic>covariance and shape matrix estimation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Direction of arrival</topic><topic>Electric breakdown</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Lenses</topic><topic>Multivariate analysis</topic><topic>Outliers (statistics)</topic><topic>Probability density function</topic><topic>robust estimation of multivariate location and scatter</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Sq-estimator</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fishbone, Justin A.</creatorcontrib><creatorcontrib>Mili, Lamine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fishbone, Justin A.</au><au>Mili, Lamine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Robust Complex Covariance Estimators with Applications to Sensor Array Processing</atitle><jtitle>IEEE open journal of signal processing</jtitle><stitle>OJSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>4</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>2644-1322</issn><eissn>2644-1322</eissn><coden>IOJSAF</coden><abstract>Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as M -estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate S -estimators. The paper extends multivariate S estimation theory to the complex-valued domain. The theoretical performances of S -estimators are explored and compared with M -estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJSP.2023.3261806</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2704-9026</orcidid><orcidid>https://orcid.org/0000-0001-6134-3945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1322
ispartof IEEE open journal of signal processing, 2023-01, Vol.4, p.1-18
issn 2644-1322
2644-1322
language eng
recordid cdi_ieee_primary_10081068
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Beamforming
Complex elliptically symmetric distribution
complex-valued S-estimator
covariance and shape matrix estimation
Covariance matrices
Covariance matrix
Direction of arrival
Electric breakdown
Estimation
Estimators
Lenses
Multivariate analysis
Outliers (statistics)
Probability density function
robust estimation of multivariate location and scatter
Robustness
Sensor arrays
Signal classification
Signal processing
Sq-estimator
Symmetric matrices
title Highly Robust Complex Covariance Estimators with Applications to Sensor Array Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Robust%20Complex%20Covariance%20Estimators%20with%20Applications%20to%20Sensor%20Array%20Processing&rft.jtitle=IEEE%20open%20journal%20of%20signal%20processing&rft.au=Fishbone,%20Justin%20A.&rft.date=2023-01-01&rft.volume=4&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=2644-1322&rft.eissn=2644-1322&rft.coden=IOJSAF&rft_id=info:doi/10.1109/OJSP.2023.3261806&rft_dat=%3Cproquest_ieee_%3E2806222199%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806222199&rft_id=info:pmid/&rft_ieee_id=10081068&rft_doaj_id=oai_doaj_org_article_81d1790f3cdc46ecae875e9f8c28918a&rfr_iscdi=true