Dynamic Network-Assisted D2D-Aided Coded Distributed Learning
Today, numerous machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of wireless networks. Distributed real-time ML solutions are highly susceptible to the so-called straggler effect caused by resource heterogeneity, which can be mitigated by v...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2023-06, Vol.71 (6), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on communications |
container_volume | 71 |
creator | Zeulin, Nikita Galinina, Olga Himayat, Nageen Andreev, Sergey Heath, Robert W. |
description | Today, numerous machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of wireless networks. Distributed real-time ML solutions are highly susceptible to the so-called straggler effect caused by resource heterogeneity, which can be mitigated by various computation offloading mechanisms that severely impact communication efficiency, especially in large-scale scenarios. To reduce the communication overhead, we leverage device-to-device (D2D) connectivity, which enhances spectrum utilization and allows for efficient data exchange between proximate devices. In particular, we design a novel D2D-aided coded distributed learning method named D2D-CDL for efficient load balancing across devices. The proposed solution captures system dynamics, including data (time-varying learning model, irregular intensity of data arrivals), device (diverse computational resources and volume of training data), and deployment (different locations and D2D graph connectivity). To decrease the number of communication rounds, we derive an optimal compression rate, which minimizes the processing time. The resulting optimization problem provides suboptimal compression parameters that improve the total training time. Our proposed method is particularly beneficial for real-time collaborative applications, where users continuously generate training data thus yielding a model drift. |
doi_str_mv | 10.1109/TCOMM.2023.3259442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10077407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10077407</ieee_id><sourcerecordid>2826474677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-32607b27e71b0ec22749a437f42a2d2a9d808c6203f77e484443729424073dbd3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMIPIA6VOLus104cHzhUSXlILb2Us-UkDnKhSbFTof49Du2By-5qZ2ZHO4TcMpgyBuphna-WyykC8inHRAmBZ2TEkiSjkCXynIwAFNBUyuySXIWwAQABnI_IY3FozdZVkzfb_3T-k85CcKG39aTAgs5cHae8G2oR196V-wFbWONb135ck4vGfAV7c-pj8v40X-cvdLF6fs1nC1qhYj3lmIIsUVrJSrAVohTKCC4bgQZrNKrOIKtSBN5IaUUmRARRCRQgeV3WfEzuj3d3vvve29DrTbf3bbTUmGEqpIivRRYeWZXvQvC20TvvtsYfNAM9xKT_YtJDTPoUUxTdHUXOWvtPAFIO7r-nWmEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826474677</pqid></control><display><type>article</type><title>Dynamic Network-Assisted D2D-Aided Coded Distributed Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zeulin, Nikita ; Galinina, Olga ; Himayat, Nageen ; Andreev, Sergey ; Heath, Robert W.</creator><creatorcontrib>Zeulin, Nikita ; Galinina, Olga ; Himayat, Nageen ; Andreev, Sergey ; Heath, Robert W.</creatorcontrib><description>Today, numerous machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of wireless networks. Distributed real-time ML solutions are highly susceptible to the so-called straggler effect caused by resource heterogeneity, which can be mitigated by various computation offloading mechanisms that severely impact communication efficiency, especially in large-scale scenarios. To reduce the communication overhead, we leverage device-to-device (D2D) connectivity, which enhances spectrum utilization and allows for efficient data exchange between proximate devices. In particular, we design a novel D2D-aided coded distributed learning method named D2D-CDL for efficient load balancing across devices. The proposed solution captures system dynamics, including data (time-varying learning model, irregular intensity of data arrivals), device (diverse computational resources and volume of training data), and deployment (different locations and D2D graph connectivity). To decrease the number of communication rounds, we derive an optimal compression rate, which minimizes the processing time. The resulting optimization problem provides suboptimal compression parameters that improve the total training time. Our proposed method is particularly beneficial for real-time collaborative applications, where users continuously generate training data thus yielding a model drift.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3259442</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>coded computing ; Collaboration ; Communication ; Computation offloading ; Computational modeling ; Computer aided instruction ; data compression ; Data exchange ; Data models ; Data processing ; Device-to-device communication ; device-to-device communications ; Distance learning ; Graph theory ; Heterogeneity ; load balancing ; Machine learning ; online distributed learning ; Optimization ; Real time ; System dynamics ; Training ; Wireless networks</subject><ispartof>IEEE transactions on communications, 2023-06, Vol.71 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-32607b27e71b0ec22749a437f42a2d2a9d808c6203f77e484443729424073dbd3</cites><orcidid>0000-0002-4060-9406 ; 0000-0002-4666-5628 ; 0000-0001-8223-3665 ; 0000-0002-3001-8389 ; 0000-0002-5386-1061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10077407$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Zeulin, Nikita</creatorcontrib><creatorcontrib>Galinina, Olga</creatorcontrib><creatorcontrib>Himayat, Nageen</creatorcontrib><creatorcontrib>Andreev, Sergey</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><title>Dynamic Network-Assisted D2D-Aided Coded Distributed Learning</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Today, numerous machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of wireless networks. Distributed real-time ML solutions are highly susceptible to the so-called straggler effect caused by resource heterogeneity, which can be mitigated by various computation offloading mechanisms that severely impact communication efficiency, especially in large-scale scenarios. To reduce the communication overhead, we leverage device-to-device (D2D) connectivity, which enhances spectrum utilization and allows for efficient data exchange between proximate devices. In particular, we design a novel D2D-aided coded distributed learning method named D2D-CDL for efficient load balancing across devices. The proposed solution captures system dynamics, including data (time-varying learning model, irregular intensity of data arrivals), device (diverse computational resources and volume of training data), and deployment (different locations and D2D graph connectivity). To decrease the number of communication rounds, we derive an optimal compression rate, which minimizes the processing time. The resulting optimization problem provides suboptimal compression parameters that improve the total training time. Our proposed method is particularly beneficial for real-time collaborative applications, where users continuously generate training data thus yielding a model drift.</description><subject>coded computing</subject><subject>Collaboration</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Computer aided instruction</subject><subject>data compression</subject><subject>Data exchange</subject><subject>Data models</subject><subject>Data processing</subject><subject>Device-to-device communication</subject><subject>device-to-device communications</subject><subject>Distance learning</subject><subject>Graph theory</subject><subject>Heterogeneity</subject><subject>load balancing</subject><subject>Machine learning</subject><subject>online distributed learning</subject><subject>Optimization</subject><subject>Real time</subject><subject>System dynamics</subject><subject>Training</subject><subject>Wireless networks</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIlMIPIA6VOLus104cHzhUSXlILb2Us-UkDnKhSbFTof49Du2By-5qZ2ZHO4TcMpgyBuphna-WyykC8inHRAmBZ2TEkiSjkCXynIwAFNBUyuySXIWwAQABnI_IY3FozdZVkzfb_3T-k85CcKG39aTAgs5cHae8G2oR196V-wFbWONb135ck4vGfAV7c-pj8v40X-cvdLF6fs1nC1qhYj3lmIIsUVrJSrAVohTKCC4bgQZrNKrOIKtSBN5IaUUmRARRCRQgeV3WfEzuj3d3vvve29DrTbf3bbTUmGEqpIivRRYeWZXvQvC20TvvtsYfNAM9xKT_YtJDTPoUUxTdHUXOWvtPAFIO7r-nWmEI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zeulin, Nikita</creator><creator>Galinina, Olga</creator><creator>Himayat, Nageen</creator><creator>Andreev, Sergey</creator><creator>Heath, Robert W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4060-9406</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><orcidid>https://orcid.org/0000-0001-8223-3665</orcidid><orcidid>https://orcid.org/0000-0002-3001-8389</orcidid><orcidid>https://orcid.org/0000-0002-5386-1061</orcidid></search><sort><creationdate>20230601</creationdate><title>Dynamic Network-Assisted D2D-Aided Coded Distributed Learning</title><author>Zeulin, Nikita ; Galinina, Olga ; Himayat, Nageen ; Andreev, Sergey ; Heath, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-32607b27e71b0ec22749a437f42a2d2a9d808c6203f77e484443729424073dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>coded computing</topic><topic>Collaboration</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Computer aided instruction</topic><topic>data compression</topic><topic>Data exchange</topic><topic>Data models</topic><topic>Data processing</topic><topic>Device-to-device communication</topic><topic>device-to-device communications</topic><topic>Distance learning</topic><topic>Graph theory</topic><topic>Heterogeneity</topic><topic>load balancing</topic><topic>Machine learning</topic><topic>online distributed learning</topic><topic>Optimization</topic><topic>Real time</topic><topic>System dynamics</topic><topic>Training</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeulin, Nikita</creatorcontrib><creatorcontrib>Galinina, Olga</creatorcontrib><creatorcontrib>Himayat, Nageen</creatorcontrib><creatorcontrib>Andreev, Sergey</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeulin, Nikita</au><au>Galinina, Olga</au><au>Himayat, Nageen</au><au>Andreev, Sergey</au><au>Heath, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Network-Assisted D2D-Aided Coded Distributed Learning</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>71</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Today, numerous machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of wireless networks. Distributed real-time ML solutions are highly susceptible to the so-called straggler effect caused by resource heterogeneity, which can be mitigated by various computation offloading mechanisms that severely impact communication efficiency, especially in large-scale scenarios. To reduce the communication overhead, we leverage device-to-device (D2D) connectivity, which enhances spectrum utilization and allows for efficient data exchange between proximate devices. In particular, we design a novel D2D-aided coded distributed learning method named D2D-CDL for efficient load balancing across devices. The proposed solution captures system dynamics, including data (time-varying learning model, irregular intensity of data arrivals), device (diverse computational resources and volume of training data), and deployment (different locations and D2D graph connectivity). To decrease the number of communication rounds, we derive an optimal compression rate, which minimizes the processing time. The resulting optimization problem provides suboptimal compression parameters that improve the total training time. Our proposed method is particularly beneficial for real-time collaborative applications, where users continuously generate training data thus yielding a model drift.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3259442</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4060-9406</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><orcidid>https://orcid.org/0000-0001-8223-3665</orcidid><orcidid>https://orcid.org/0000-0002-3001-8389</orcidid><orcidid>https://orcid.org/0000-0002-5386-1061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2023-06, Vol.71 (6), p.1-1 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_10077407 |
source | IEEE Electronic Library (IEL) |
subjects | coded computing Collaboration Communication Computation offloading Computational modeling Computer aided instruction data compression Data exchange Data models Data processing Device-to-device communication device-to-device communications Distance learning Graph theory Heterogeneity load balancing Machine learning online distributed learning Optimization Real time System dynamics Training Wireless networks |
title | Dynamic Network-Assisted D2D-Aided Coded Distributed Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Network-Assisted%20D2D-Aided%20Coded%20Distributed%20Learning&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Zeulin,%20Nikita&rft.date=2023-06-01&rft.volume=71&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3259442&rft_dat=%3Cproquest_ieee_%3E2826474677%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826474677&rft_id=info:pmid/&rft_ieee_id=10077407&rfr_iscdi=true |