Ultralow Power On-the-Eye Vergence and Distance Sensing through Differential Magnetometry

We demonstrate the realization of a very low energy, on-the-eye vergence-type distance ranger based on sensing of a locally-uniform vector field, specifically the earth's magnetic field. This ranging method is passive, only requiring measurement of the magnetic field vector at both eyeballs uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Deshpande, A., Karkhanis, M. U., Ghosh, C., Pourshaban, E., Hasan, M. R., Banerjee, A., Kim, H., Mastrangelo, C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the realization of a very low energy, on-the-eye vergence-type distance ranger based on sensing of a locally-uniform vector field, specifically the earth's magnetic field. This ranging method is passive, only requiring measurement of the magnetic field vector at both eyeballs utilizing magnetometer chips placed on the eye scleral regions. The eye vergence angle and range distance are calculated from these two vector quantities. The method can obtain a range reading with as little as 118 nJ of energy consumed per eye for 3.3V and 50 nJ when operated at 1.9V. This method is thus suitable for applications where energy storage is very limited such as in smart contacts vision correcting microsystems.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3258918