SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification

In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-09, Vol.35 (9), p.12157-12171
Hauptverfasser: Wang, Jialin, Gao, Rui, Zheng, Haotian, Zhu, Hao, Shi, C.-J. Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12171
container_issue 9
container_start_page 12157
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Wang, Jialin
Gao, Rui
Zheng, Haotian
Zhu, Hao
Shi, C.-J. Richard
description In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neighborhood field graph (WNFG) to represent EEG signals. The WNFG reduces redundant edges between graph nodes and has lower graph generation time and memory usage than the baseline solution. The sequential graph convolutional network is further developed from a WNFG by combining sparse weight pruning and the alternating direction method of multipliers (ADMM). Compared with the state-of-the-art method, our method has the same classification accuracy on the Bonn public dataset and the spikes and slow waves (SSW) clinical real dataset when the connection rate is ten times smaller.
doi_str_mv 10.1109/TNNLS.2023.3252569
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10075361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075361</ieee_id><sourcerecordid>2798714170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a7610e90bbe8af6238350122d0477a582a5c96604969f002ca36cb7c53768e7c3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobsz9ARHJpTed-WiTxrtRahXGvOgEbySkWarRbq1Jq_jvbd0cnptzLp73hfMAcI7RDGMkrlfL5SKfEUTojJKIREwcgTHBjASExvHx4eZPIzD1_g31w1DEQnEKRpQjijgRY_Cc51myNO0NnMO8Uc6bfhndOgUzp5pXmNTbz7rqWltvVQV78qt277CsHUwbW5mmtRqmaQZz-zIASaW8t6XVakicgZNSVd5M93sCHm_TVXIXLB6y-2S-CDRlcRsozjAyAhWFiVXJ-gdohDAhaxRyrqKYqEgLxlAomCgRIlpRpguuI8pZbLimE3C1621c_dEZ38qN9dpUldqauvOScBFzHOL-7QkgO1S72ntnStk4u1HuW2IkB7Py16wczMq92T50ue_vio1ZHyJ_HnvgYgdYY8y_RsQjyjD9Aa83e2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798714170</pqid></control><display><type>article</type><title>SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jialin ; Gao, Rui ; Zheng, Haotian ; Zhu, Hao ; Shi, C.-J. Richard</creator><creatorcontrib>Wang, Jialin ; Gao, Rui ; Zheng, Haotian ; Zhu, Hao ; Shi, C.-J. Richard</creatorcontrib><description>In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neighborhood field graph (WNFG) to represent EEG signals. The WNFG reduces redundant edges between graph nodes and has lower graph generation time and memory usage than the baseline solution. The sequential graph convolutional network is further developed from a WNFG by combining sparse weight pruning and the alternating direction method of multipliers (ADMM). Compared with the state-of-the-art method, our method has the same classification accuracy on the Bonn public dataset and the spikes and slow waves (SSW) clinical real dataset when the connection rate is ten times smaller.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3252569</identifier><identifier>PMID: 37030729</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Alternating direction method of multipliers (ADMM) ; Brain modeling ; Computational modeling ; Convolutional neural networks ; Deep Learning ; electroencephalogram (EEG) signal classification ; Electroencephalography ; Electroencephalography - classification ; Electroencephalography - methods ; Epilepsy - classification ; Epilepsy - diagnosis ; Epilepsy - physiopathology ; Feature extraction ; graph neural network (GNN) ; Humans ; Neural Networks, Computer ; nonconvextiy ; Pattern classification ; Signal Processing, Computer-Assisted ; weight pruning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-09, Vol.35 (9), p.12157-12171</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a7610e90bbe8af6238350122d0477a582a5c96604969f002ca36cb7c53768e7c3</citedby><cites>FETCH-LOGICAL-c368t-a7610e90bbe8af6238350122d0477a582a5c96604969f002ca36cb7c53768e7c3</cites><orcidid>0000-0002-3157-3464 ; 0000-0003-4202-9656 ; 0000-0001-7570-8140 ; 0009-0001-0791-7108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075361$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37030729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jialin</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Shi, C.-J. Richard</creatorcontrib><title>SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neighborhood field graph (WNFG) to represent EEG signals. The WNFG reduces redundant edges between graph nodes and has lower graph generation time and memory usage than the baseline solution. The sequential graph convolutional network is further developed from a WNFG by combining sparse weight pruning and the alternating direction method of multipliers (ADMM). Compared with the state-of-the-art method, our method has the same classification accuracy on the Bonn public dataset and the spikes and slow waves (SSW) clinical real dataset when the connection rate is ten times smaller.</description><subject>Algorithms</subject><subject>Alternating direction method of multipliers (ADMM)</subject><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>Convolutional neural networks</subject><subject>Deep Learning</subject><subject>electroencephalogram (EEG) signal classification</subject><subject>Electroencephalography</subject><subject>Electroencephalography - classification</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy - classification</subject><subject>Epilepsy - diagnosis</subject><subject>Epilepsy - physiopathology</subject><subject>Feature extraction</subject><subject>graph neural network (GNN)</subject><subject>Humans</subject><subject>Neural Networks, Computer</subject><subject>nonconvextiy</subject><subject>Pattern classification</subject><subject>Signal Processing, Computer-Assisted</subject><subject>weight pruning</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkF1LwzAUhoMobsz9ARHJpTed-WiTxrtRahXGvOgEbySkWarRbq1Jq_jvbd0cnptzLp73hfMAcI7RDGMkrlfL5SKfEUTojJKIREwcgTHBjASExvHx4eZPIzD1_g31w1DEQnEKRpQjijgRY_Cc51myNO0NnMO8Uc6bfhndOgUzp5pXmNTbz7rqWltvVQV78qt277CsHUwbW5mmtRqmaQZz-zIASaW8t6XVakicgZNSVd5M93sCHm_TVXIXLB6y-2S-CDRlcRsozjAyAhWFiVXJ-gdohDAhaxRyrqKYqEgLxlAomCgRIlpRpguuI8pZbLimE3C1621c_dEZ38qN9dpUldqauvOScBFzHOL-7QkgO1S72ntnStk4u1HuW2IkB7Py16wczMq92T50ue_vio1ZHyJ_HnvgYgdYY8y_RsQjyjD9Aa83e2A</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Jialin</creator><creator>Gao, Rui</creator><creator>Zheng, Haotian</creator><creator>Zhu, Hao</creator><creator>Shi, C.-J. Richard</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3157-3464</orcidid><orcidid>https://orcid.org/0000-0003-4202-9656</orcidid><orcidid>https://orcid.org/0000-0001-7570-8140</orcidid><orcidid>https://orcid.org/0009-0001-0791-7108</orcidid></search><sort><creationdate>20240901</creationdate><title>SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification</title><author>Wang, Jialin ; Gao, Rui ; Zheng, Haotian ; Zhu, Hao ; Shi, C.-J. Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a7610e90bbe8af6238350122d0477a582a5c96604969f002ca36cb7c53768e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternating direction method of multipliers (ADMM)</topic><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>Convolutional neural networks</topic><topic>Deep Learning</topic><topic>electroencephalogram (EEG) signal classification</topic><topic>Electroencephalography</topic><topic>Electroencephalography - classification</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy - classification</topic><topic>Epilepsy - diagnosis</topic><topic>Epilepsy - physiopathology</topic><topic>Feature extraction</topic><topic>graph neural network (GNN)</topic><topic>Humans</topic><topic>Neural Networks, Computer</topic><topic>nonconvextiy</topic><topic>Pattern classification</topic><topic>Signal Processing, Computer-Assisted</topic><topic>weight pruning</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jialin</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zheng, Haotian</creatorcontrib><creatorcontrib>Zhu, Hao</creatorcontrib><creatorcontrib>Shi, C.-J. Richard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jialin</au><au>Gao, Rui</au><au>Zheng, Haotian</au><au>Zhu, Hao</au><au>Shi, C.-J. Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>35</volume><issue>9</issue><spage>12157</spage><epage>12171</epage><pages>12157-12171</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, we propose a sparse spectra graph convolutional network (SSGCNet) for epileptic electroencephalogram (EEG) signal classification. The goal is to develop a lightweighted deep learning model while retaining a high level of classification accuracy. To do so, we propose a weighted neighborhood field graph (WNFG) to represent EEG signals. The WNFG reduces redundant edges between graph nodes and has lower graph generation time and memory usage than the baseline solution. The sequential graph convolutional network is further developed from a WNFG by combining sparse weight pruning and the alternating direction method of multipliers (ADMM). Compared with the state-of-the-art method, our method has the same classification accuracy on the Bonn public dataset and the spikes and slow waves (SSW) clinical real dataset when the connection rate is ten times smaller.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37030729</pmid><doi>10.1109/TNNLS.2023.3252569</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3157-3464</orcidid><orcidid>https://orcid.org/0000-0003-4202-9656</orcidid><orcidid>https://orcid.org/0000-0001-7570-8140</orcidid><orcidid>https://orcid.org/0009-0001-0791-7108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-09, Vol.35 (9), p.12157-12171
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_ieee_primary_10075361
source MEDLINE; IEEE Electronic Library (IEL)
subjects Algorithms
Alternating direction method of multipliers (ADMM)
Brain modeling
Computational modeling
Convolutional neural networks
Deep Learning
electroencephalogram (EEG) signal classification
Electroencephalography
Electroencephalography - classification
Electroencephalography - methods
Epilepsy - classification
Epilepsy - diagnosis
Epilepsy - physiopathology
Feature extraction
graph neural network (GNN)
Humans
Neural Networks, Computer
nonconvextiy
Pattern classification
Signal Processing, Computer-Assisted
weight pruning
title SSGCNet: A Sparse Spectra Graph Convolutional Network for Epileptic EEG Signal Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SSGCNet:%20A%20Sparse%20Spectra%20Graph%20Convolutional%20Network%20for%20Epileptic%20EEG%20Signal%20Classification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Jialin&rft.date=2024-09-01&rft.volume=35&rft.issue=9&rft.spage=12157&rft.epage=12171&rft.pages=12157-12171&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3252569&rft_dat=%3Cproquest_ieee_%3E2798714170%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798714170&rft_id=info:pmid/37030729&rft_ieee_id=10075361&rfr_iscdi=true