UAS-Borne Radar for Autonomous Navigation and Surveillance Applications

The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-07, Vol.24 (7), p.1-15
Hauptverfasser: Milias, Christos, Andersen, Rasmus B., Muhammad, Bilal, Kristensen, Jes T. B., Lazaridis, Pavlos I., Zaharis, Zaharias D., Mihovska, Albena, Hermansen, Dan D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 7
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Milias, Christos
Andersen, Rasmus B.
Muhammad, Bilal
Kristensen, Jes T. B.
Lazaridis, Pavlos I.
Zaharis, Zaharias D.
Mihovska, Albena
Hermansen, Dan D. S.
description The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.
doi_str_mv 10.1109/TITS.2023.3254582
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10075053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075053</ieee_id><sourcerecordid>2834307845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dlx9l92c4xFa6Eo2Pa8bLIbSUmzcTcp-O1NbA-eZph5b97wQ-geQ4IxZE_b1XaTECA0oYQzLskFmmHOZQyA08upJyzOgMM1uglhP04Zx3iGlrt8Ez8739roUxvto8r5KB9617qDG0L0ro_1l-5r10a6NdFm8EdbN41uSxvlXdfU5d8y3KKrSjfB3p3rHO1eX7aLt3j9sVwt8nVcUir6mJUpaCyzSma6YCyFCsDYKisLTqkuiBbAsCm0MEXGKWBpiE2BCC6MZFRQOkePp7udd9-DDb3au8G3Y6QikjIKQjI-qvBJVXoXgreV6nx90P5HYVATLzXxUhMvdeY1eh5Ontpa-08PgsP43C_BJWXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834307845</pqid></control><display><type>article</type><title>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Milias, Christos ; Andersen, Rasmus B. ; Muhammad, Bilal ; Kristensen, Jes T. B. ; Lazaridis, Pavlos I. ; Zaharis, Zaharias D. ; Mihovska, Albena ; Hermansen, Dan D. S.</creator><creatorcontrib>Milias, Christos ; Andersen, Rasmus B. ; Muhammad, Bilal ; Kristensen, Jes T. B. ; Lazaridis, Pavlos I. ; Zaharis, Zaharias D. ; Mihovska, Albena ; Hermansen, Dan D. S.</creatorcontrib><description>The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3254582</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Airborne radar ; Autonomous navigation ; Autonomous robots ; Drone aircraft ; drone detection ; Drones ; Field tests ; Radar ; Radar antennas ; Radar applications ; Radar detection ; Radar equipment ; Surveillance ; UAS-borne radar ; Unmanned aircraft</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-07, Vol.24 (7), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</citedby><cites>FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</cites><orcidid>0009-0006-6001-1803 ; 0000-0002-5983-0725 ; 0000-0002-4548-282X ; 0000-0002-4919-3101 ; 0000-0002-0093-6373 ; 0000-0001-5091-2567 ; 0009-0005-4532-6519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10075053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Milias, Christos</creatorcontrib><creatorcontrib>Andersen, Rasmus B.</creatorcontrib><creatorcontrib>Muhammad, Bilal</creatorcontrib><creatorcontrib>Kristensen, Jes T. B.</creatorcontrib><creatorcontrib>Lazaridis, Pavlos I.</creatorcontrib><creatorcontrib>Zaharis, Zaharias D.</creatorcontrib><creatorcontrib>Mihovska, Albena</creatorcontrib><creatorcontrib>Hermansen, Dan D. S.</creatorcontrib><title>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.</description><subject>Airborne radar</subject><subject>Autonomous navigation</subject><subject>Autonomous robots</subject><subject>Drone aircraft</subject><subject>drone detection</subject><subject>Drones</subject><subject>Field tests</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar applications</subject><subject>Radar detection</subject><subject>Radar equipment</subject><subject>Surveillance</subject><subject>UAS-borne radar</subject><subject>Unmanned aircraft</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dlx9l92c4xFa6Eo2Pa8bLIbSUmzcTcp-O1NbA-eZph5b97wQ-geQ4IxZE_b1XaTECA0oYQzLskFmmHOZQyA08upJyzOgMM1uglhP04Zx3iGlrt8Ez8739roUxvto8r5KB9617qDG0L0ro_1l-5r10a6NdFm8EdbN41uSxvlXdfU5d8y3KKrSjfB3p3rHO1eX7aLt3j9sVwt8nVcUir6mJUpaCyzSma6YCyFCsDYKisLTqkuiBbAsCm0MEXGKWBpiE2BCC6MZFRQOkePp7udd9-DDb3au8G3Y6QikjIKQjI-qvBJVXoXgreV6nx90P5HYVATLzXxUhMvdeY1eh5Ontpa-08PgsP43C_BJWXA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Milias, Christos</creator><creator>Andersen, Rasmus B.</creator><creator>Muhammad, Bilal</creator><creator>Kristensen, Jes T. B.</creator><creator>Lazaridis, Pavlos I.</creator><creator>Zaharis, Zaharias D.</creator><creator>Mihovska, Albena</creator><creator>Hermansen, Dan D. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0006-6001-1803</orcidid><orcidid>https://orcid.org/0000-0002-5983-0725</orcidid><orcidid>https://orcid.org/0000-0002-4548-282X</orcidid><orcidid>https://orcid.org/0000-0002-4919-3101</orcidid><orcidid>https://orcid.org/0000-0002-0093-6373</orcidid><orcidid>https://orcid.org/0000-0001-5091-2567</orcidid><orcidid>https://orcid.org/0009-0005-4532-6519</orcidid></search><sort><creationdate>20230701</creationdate><title>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</title><author>Milias, Christos ; Andersen, Rasmus B. ; Muhammad, Bilal ; Kristensen, Jes T. B. ; Lazaridis, Pavlos I. ; Zaharis, Zaharias D. ; Mihovska, Albena ; Hermansen, Dan D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne radar</topic><topic>Autonomous navigation</topic><topic>Autonomous robots</topic><topic>Drone aircraft</topic><topic>drone detection</topic><topic>Drones</topic><topic>Field tests</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar applications</topic><topic>Radar detection</topic><topic>Radar equipment</topic><topic>Surveillance</topic><topic>UAS-borne radar</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milias, Christos</creatorcontrib><creatorcontrib>Andersen, Rasmus B.</creatorcontrib><creatorcontrib>Muhammad, Bilal</creatorcontrib><creatorcontrib>Kristensen, Jes T. B.</creatorcontrib><creatorcontrib>Lazaridis, Pavlos I.</creatorcontrib><creatorcontrib>Zaharis, Zaharias D.</creatorcontrib><creatorcontrib>Mihovska, Albena</creatorcontrib><creatorcontrib>Hermansen, Dan D. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Milias, Christos</au><au>Andersen, Rasmus B.</au><au>Muhammad, Bilal</au><au>Kristensen, Jes T. B.</au><au>Lazaridis, Pavlos I.</au><au>Zaharis, Zaharias D.</au><au>Mihovska, Albena</au><au>Hermansen, Dan D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>24</volume><issue>7</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3254582</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-6001-1803</orcidid><orcidid>https://orcid.org/0000-0002-5983-0725</orcidid><orcidid>https://orcid.org/0000-0002-4548-282X</orcidid><orcidid>https://orcid.org/0000-0002-4919-3101</orcidid><orcidid>https://orcid.org/0000-0002-0093-6373</orcidid><orcidid>https://orcid.org/0000-0001-5091-2567</orcidid><orcidid>https://orcid.org/0009-0005-4532-6519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-07, Vol.24 (7), p.1-15
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10075053
source IEEE Electronic Library (IEL)
subjects Airborne radar
Autonomous navigation
Autonomous robots
Drone aircraft
drone detection
Drones
Field tests
Radar
Radar antennas
Radar applications
Radar detection
Radar equipment
Surveillance
UAS-borne radar
Unmanned aircraft
title UAS-Borne Radar for Autonomous Navigation and Surveillance Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAS-Borne%20Radar%20for%20Autonomous%20Navigation%20and%20Surveillance%20Applications&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Milias,%20Christos&rft.date=2023-07-01&rft.volume=24&rft.issue=7&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3254582&rft_dat=%3Cproquest_RIE%3E2834307845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834307845&rft_id=info:pmid/&rft_ieee_id=10075053&rfr_iscdi=true