UAS-Borne Radar for Autonomous Navigation and Surveillance Applications
The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system dete...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-07, Vol.24 (7), p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Milias, Christos Andersen, Rasmus B. Muhammad, Bilal Kristensen, Jes T. B. Lazaridis, Pavlos I. Zaharis, Zaharias D. Mihovska, Albena Hermansen, Dan D. S. |
description | The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars. |
doi_str_mv | 10.1109/TITS.2023.3254582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10075053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075053</ieee_id><sourcerecordid>2834307845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dlx9l92c4xFa6Eo2Pa8bLIbSUmzcTcp-O1NbA-eZph5b97wQ-geQ4IxZE_b1XaTECA0oYQzLskFmmHOZQyA08upJyzOgMM1uglhP04Zx3iGlrt8Ez8739roUxvto8r5KB9617qDG0L0ro_1l-5r10a6NdFm8EdbN41uSxvlXdfU5d8y3KKrSjfB3p3rHO1eX7aLt3j9sVwt8nVcUir6mJUpaCyzSma6YCyFCsDYKisLTqkuiBbAsCm0MEXGKWBpiE2BCC6MZFRQOkePp7udd9-DDb3au8G3Y6QikjIKQjI-qvBJVXoXgreV6nx90P5HYVATLzXxUhMvdeY1eh5Ontpa-08PgsP43C_BJWXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834307845</pqid></control><display><type>article</type><title>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Milias, Christos ; Andersen, Rasmus B. ; Muhammad, Bilal ; Kristensen, Jes T. B. ; Lazaridis, Pavlos I. ; Zaharis, Zaharias D. ; Mihovska, Albena ; Hermansen, Dan D. S.</creator><creatorcontrib>Milias, Christos ; Andersen, Rasmus B. ; Muhammad, Bilal ; Kristensen, Jes T. B. ; Lazaridis, Pavlos I. ; Zaharis, Zaharias D. ; Mihovska, Albena ; Hermansen, Dan D. S.</creatorcontrib><description>The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3254582</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Airborne radar ; Autonomous navigation ; Autonomous robots ; Drone aircraft ; drone detection ; Drones ; Field tests ; Radar ; Radar antennas ; Radar applications ; Radar detection ; Radar equipment ; Surveillance ; UAS-borne radar ; Unmanned aircraft</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-07, Vol.24 (7), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</citedby><cites>FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</cites><orcidid>0009-0006-6001-1803 ; 0000-0002-5983-0725 ; 0000-0002-4548-282X ; 0000-0002-4919-3101 ; 0000-0002-0093-6373 ; 0000-0001-5091-2567 ; 0009-0005-4532-6519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10075053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Milias, Christos</creatorcontrib><creatorcontrib>Andersen, Rasmus B.</creatorcontrib><creatorcontrib>Muhammad, Bilal</creatorcontrib><creatorcontrib>Kristensen, Jes T. B.</creatorcontrib><creatorcontrib>Lazaridis, Pavlos I.</creatorcontrib><creatorcontrib>Zaharis, Zaharias D.</creatorcontrib><creatorcontrib>Mihovska, Albena</creatorcontrib><creatorcontrib>Hermansen, Dan D. S.</creatorcontrib><title>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.</description><subject>Airborne radar</subject><subject>Autonomous navigation</subject><subject>Autonomous robots</subject><subject>Drone aircraft</subject><subject>drone detection</subject><subject>Drones</subject><subject>Field tests</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar applications</subject><subject>Radar detection</subject><subject>Radar equipment</subject><subject>Surveillance</subject><subject>UAS-borne radar</subject><subject>Unmanned aircraft</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOAh4Dlx9l92c4xFa6Eo2Pa8bLIbSUmzcTcp-O1NbA-eZph5b97wQ-geQ4IxZE_b1XaTECA0oYQzLskFmmHOZQyA08upJyzOgMM1uglhP04Zx3iGlrt8Ez8739roUxvto8r5KB9617qDG0L0ro_1l-5r10a6NdFm8EdbN41uSxvlXdfU5d8y3KKrSjfB3p3rHO1eX7aLt3j9sVwt8nVcUir6mJUpaCyzSma6YCyFCsDYKisLTqkuiBbAsCm0MEXGKWBpiE2BCC6MZFRQOkePp7udd9-DDb3au8G3Y6QikjIKQjI-qvBJVXoXgreV6nx90P5HYVATLzXxUhMvdeY1eh5Ontpa-08PgsP43C_BJWXA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Milias, Christos</creator><creator>Andersen, Rasmus B.</creator><creator>Muhammad, Bilal</creator><creator>Kristensen, Jes T. B.</creator><creator>Lazaridis, Pavlos I.</creator><creator>Zaharis, Zaharias D.</creator><creator>Mihovska, Albena</creator><creator>Hermansen, Dan D. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0006-6001-1803</orcidid><orcidid>https://orcid.org/0000-0002-5983-0725</orcidid><orcidid>https://orcid.org/0000-0002-4548-282X</orcidid><orcidid>https://orcid.org/0000-0002-4919-3101</orcidid><orcidid>https://orcid.org/0000-0002-0093-6373</orcidid><orcidid>https://orcid.org/0000-0001-5091-2567</orcidid><orcidid>https://orcid.org/0009-0005-4532-6519</orcidid></search><sort><creationdate>20230701</creationdate><title>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</title><author>Milias, Christos ; Andersen, Rasmus B. ; Muhammad, Bilal ; Kristensen, Jes T. B. ; Lazaridis, Pavlos I. ; Zaharis, Zaharias D. ; Mihovska, Albena ; Hermansen, Dan D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-4c60a189f89ab4460f00def9cb533ab2a7041dba7db953018d2e602757d843733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Airborne radar</topic><topic>Autonomous navigation</topic><topic>Autonomous robots</topic><topic>Drone aircraft</topic><topic>drone detection</topic><topic>Drones</topic><topic>Field tests</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar applications</topic><topic>Radar detection</topic><topic>Radar equipment</topic><topic>Surveillance</topic><topic>UAS-borne radar</topic><topic>Unmanned aircraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milias, Christos</creatorcontrib><creatorcontrib>Andersen, Rasmus B.</creatorcontrib><creatorcontrib>Muhammad, Bilal</creatorcontrib><creatorcontrib>Kristensen, Jes T. B.</creatorcontrib><creatorcontrib>Lazaridis, Pavlos I.</creatorcontrib><creatorcontrib>Zaharis, Zaharias D.</creatorcontrib><creatorcontrib>Mihovska, Albena</creatorcontrib><creatorcontrib>Hermansen, Dan D. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Milias, Christos</au><au>Andersen, Rasmus B.</au><au>Muhammad, Bilal</au><au>Kristensen, Jes T. B.</au><au>Lazaridis, Pavlos I.</au><au>Zaharis, Zaharias D.</au><au>Mihovska, Albena</au><au>Hermansen, Dan D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAS-Borne Radar for Autonomous Navigation and Surveillance Applications</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>24</volume><issue>7</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The autonomous navigation of UAS requires, among others, detect-and-avoid capability as a prerequisite for enabling wide-ranging applications, including the transportation of goods and people. This article presents the design, implementation, and experimental results of a UAS-borne radar system detecting drones. The applications of the proposed system include not only detect-and-avoid systems for safe and autonomous navigation of unmanned aircraft systems but also airborne surveillance of malicious drones in controlled or restricted airspace for mitigating security and privacy threats. The system performance in terms of maximum detection range is evaluated through field tests. The experimental results show that the proposed UAS-borne radar can detect a DJI Phantom 4 and a DJI Matrice 600 Pro at a maximum distance of 440 and 500 meters, respectively. The article also provides insights into the system implementation and integration aspects, discusses future research direction, and stresses the need for standardization efforts to benchmark the required performance levels for UAS-borne radars.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3254582</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0006-6001-1803</orcidid><orcidid>https://orcid.org/0000-0002-5983-0725</orcidid><orcidid>https://orcid.org/0000-0002-4548-282X</orcidid><orcidid>https://orcid.org/0000-0002-4919-3101</orcidid><orcidid>https://orcid.org/0000-0002-0093-6373</orcidid><orcidid>https://orcid.org/0000-0001-5091-2567</orcidid><orcidid>https://orcid.org/0009-0005-4532-6519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-07, Vol.24 (7), p.1-15 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10075053 |
source | IEEE Electronic Library (IEL) |
subjects | Airborne radar Autonomous navigation Autonomous robots Drone aircraft drone detection Drones Field tests Radar Radar antennas Radar applications Radar detection Radar equipment Surveillance UAS-borne radar Unmanned aircraft |
title | UAS-Borne Radar for Autonomous Navigation and Surveillance Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAS-Borne%20Radar%20for%20Autonomous%20Navigation%20and%20Surveillance%20Applications&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Milias,%20Christos&rft.date=2023-07-01&rft.volume=24&rft.issue=7&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3254582&rft_dat=%3Cproquest_RIE%3E2834307845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834307845&rft_id=info:pmid/&rft_ieee_id=10075053&rfr_iscdi=true |