A Rank-iteration Based Blind Identification Method for Convolutional Codes
A blind identification technology of channel coding has received increasing attentions in recent years. In this letter, we focus on blind identification of convolutional codes without a candidate set. To improve the blind identification accuracy, a novel rank-iteration based blind identification alg...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2023-05, Vol.27 (5), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE communications letters |
container_volume | 27 |
creator | Che, Shuling Zhang, Meiqi Li, Ying |
description | A blind identification technology of channel coding has received increasing attentions in recent years. In this letter, we focus on blind identification of convolutional codes without a candidate set. To improve the blind identification accuracy, a novel rank-iteration based blind identification algorithm for convolutional codes is proposed in this paper. Specifically, a weight-dependent threshold for the Binary Symmetric Channel (BSC) channel is firstly proposed to calculate the rank of a received data matrix more accurately. Then, we propose a new iterative operation that repeats the Gauss-Jordan Elimination Through Pivoting (GJETP) algorithm for several times, and select the smallest rank as the rank of the data matrix. Employing this strategy, the rank of a rank-deficient matrix in noisy environments can be close to its noiseless rank. Further, a rank-deficient threshold is introduced to amend the rank of the full-rank matrix after the end of the whole iterative process, which can reduce the rank deviation of the full-rank matrix. Finally, the effectiveness of the proposed method is verified by simulations and comparisons. |
doi_str_mv | 10.1109/LCOMM.2023.3257870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10073648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073648</ieee_id><sourcerecordid>2811733274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-f0e0da72ef4571d594592537403b36e1fdd86463de461cd0d43166d4074ebdfe3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhgdRsFZfQFwEXKeeuWUmyzZ4qaQURNdDmjmDqTFTZ1LBtzc1Xbg51_8_HD5CrinMKIX8rizWq9WMAeMzzqTSCk7IhEqpUzaE06EGnadK5fqcXMS4BQDNJJ2Q53nyUnUfadNjqPrGd8miimiTRdt0Nlla7PrGNfW4WmH_7m3ifEgK3337dn8YV-3QWYyX5MxVbcSrY56St4f71-IpLdePy2JepjUTqk8dINhKMXRCKmplLmTOJFcC-IZnSJ21OhMZtygyWluwgtMsswKUwI11yKfkdry7C_5rj7E3W78PwxvRME2p4pwpMajYqKqDjzGgM7vQfFbhx1AwB2bmj5k5MDNHZoPpZjQ1iPjPAIpnQvNf4jVnaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811733274</pqid></control><display><type>article</type><title>A Rank-iteration Based Blind Identification Method for Convolutional Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Che, Shuling ; Zhang, Meiqi ; Li, Ying</creator><creatorcontrib>Che, Shuling ; Zhang, Meiqi ; Li, Ying</creatorcontrib><description>A blind identification technology of channel coding has received increasing attentions in recent years. In this letter, we focus on blind identification of convolutional codes without a candidate set. To improve the blind identification accuracy, a novel rank-iteration based blind identification algorithm for convolutional codes is proposed in this paper. Specifically, a weight-dependent threshold for the Binary Symmetric Channel (BSC) channel is firstly proposed to calculate the rank of a received data matrix more accurately. Then, we propose a new iterative operation that repeats the Gauss-Jordan Elimination Through Pivoting (GJETP) algorithm for several times, and select the smallest rank as the rank of the data matrix. Employing this strategy, the rank of a rank-deficient matrix in noisy environments can be close to its noiseless rank. Further, a rank-deficient threshold is introduced to amend the rank of the full-rank matrix after the end of the whole iterative process, which can reduce the rank deviation of the full-rank matrix. Finally, the effectiveness of the proposed method is verified by simulations and comparisons.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2023.3257870</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blind identification ; Codes ; Convolutional codes ; encoder parameters ; Gaussian elimination ; GJETP algorithm ; Identification methods ; Matrix converters ; Noise measurement ; Optimized production technology ; rank-iteration ; Symbols ; Symmetric matrices</subject><ispartof>IEEE communications letters, 2023-05, Vol.27 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-f0e0da72ef4571d594592537403b36e1fdd86463de461cd0d43166d4074ebdfe3</cites><orcidid>0000-0002-0699-8786 ; 0000-0003-1582-8751 ; 0000-0002-9604-2664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073648$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073648$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Che, Shuling</creatorcontrib><creatorcontrib>Zhang, Meiqi</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><title>A Rank-iteration Based Blind Identification Method for Convolutional Codes</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>A blind identification technology of channel coding has received increasing attentions in recent years. In this letter, we focus on blind identification of convolutional codes without a candidate set. To improve the blind identification accuracy, a novel rank-iteration based blind identification algorithm for convolutional codes is proposed in this paper. Specifically, a weight-dependent threshold for the Binary Symmetric Channel (BSC) channel is firstly proposed to calculate the rank of a received data matrix more accurately. Then, we propose a new iterative operation that repeats the Gauss-Jordan Elimination Through Pivoting (GJETP) algorithm for several times, and select the smallest rank as the rank of the data matrix. Employing this strategy, the rank of a rank-deficient matrix in noisy environments can be close to its noiseless rank. Further, a rank-deficient threshold is introduced to amend the rank of the full-rank matrix after the end of the whole iterative process, which can reduce the rank deviation of the full-rank matrix. Finally, the effectiveness of the proposed method is verified by simulations and comparisons.</description><subject>Algorithms</subject><subject>Blind identification</subject><subject>Codes</subject><subject>Convolutional codes</subject><subject>encoder parameters</subject><subject>Gaussian elimination</subject><subject>GJETP algorithm</subject><subject>Identification methods</subject><subject>Matrix converters</subject><subject>Noise measurement</subject><subject>Optimized production technology</subject><subject>rank-iteration</subject><subject>Symbols</subject><subject>Symmetric matrices</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhgdRsFZfQFwEXKeeuWUmyzZ4qaQURNdDmjmDqTFTZ1LBtzc1Xbg51_8_HD5CrinMKIX8rizWq9WMAeMzzqTSCk7IhEqpUzaE06EGnadK5fqcXMS4BQDNJJ2Q53nyUnUfadNjqPrGd8miimiTRdt0Nlla7PrGNfW4WmH_7m3ifEgK3337dn8YV-3QWYyX5MxVbcSrY56St4f71-IpLdePy2JepjUTqk8dINhKMXRCKmplLmTOJFcC-IZnSJ21OhMZtygyWluwgtMsswKUwI11yKfkdry7C_5rj7E3W78PwxvRME2p4pwpMajYqKqDjzGgM7vQfFbhx1AwB2bmj5k5MDNHZoPpZjQ1iPjPAIpnQvNf4jVnaw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Che, Shuling</creator><creator>Zhang, Meiqi</creator><creator>Li, Ying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0699-8786</orcidid><orcidid>https://orcid.org/0000-0003-1582-8751</orcidid><orcidid>https://orcid.org/0000-0002-9604-2664</orcidid></search><sort><creationdate>20230501</creationdate><title>A Rank-iteration Based Blind Identification Method for Convolutional Codes</title><author>Che, Shuling ; Zhang, Meiqi ; Li, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-f0e0da72ef4571d594592537403b36e1fdd86463de461cd0d43166d4074ebdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Blind identification</topic><topic>Codes</topic><topic>Convolutional codes</topic><topic>encoder parameters</topic><topic>Gaussian elimination</topic><topic>GJETP algorithm</topic><topic>Identification methods</topic><topic>Matrix converters</topic><topic>Noise measurement</topic><topic>Optimized production technology</topic><topic>rank-iteration</topic><topic>Symbols</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Shuling</creatorcontrib><creatorcontrib>Zhang, Meiqi</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Che, Shuling</au><au>Zhang, Meiqi</au><au>Li, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rank-iteration Based Blind Identification Method for Convolutional Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>27</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>A blind identification technology of channel coding has received increasing attentions in recent years. In this letter, we focus on blind identification of convolutional codes without a candidate set. To improve the blind identification accuracy, a novel rank-iteration based blind identification algorithm for convolutional codes is proposed in this paper. Specifically, a weight-dependent threshold for the Binary Symmetric Channel (BSC) channel is firstly proposed to calculate the rank of a received data matrix more accurately. Then, we propose a new iterative operation that repeats the Gauss-Jordan Elimination Through Pivoting (GJETP) algorithm for several times, and select the smallest rank as the rank of the data matrix. Employing this strategy, the rank of a rank-deficient matrix in noisy environments can be close to its noiseless rank. Further, a rank-deficient threshold is introduced to amend the rank of the full-rank matrix after the end of the whole iterative process, which can reduce the rank deviation of the full-rank matrix. Finally, the effectiveness of the proposed method is verified by simulations and comparisons.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2023.3257870</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0699-8786</orcidid><orcidid>https://orcid.org/0000-0003-1582-8751</orcidid><orcidid>https://orcid.org/0000-0002-9604-2664</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2023-05, Vol.27 (5), p.1-1 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_10073648 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Blind identification Codes Convolutional codes encoder parameters Gaussian elimination GJETP algorithm Identification methods Matrix converters Noise measurement Optimized production technology rank-iteration Symbols Symmetric matrices |
title | A Rank-iteration Based Blind Identification Method for Convolutional Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rank-iteration%20Based%20Blind%20Identification%20Method%20for%20Convolutional%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Che,%20Shuling&rft.date=2023-05-01&rft.volume=27&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2023.3257870&rft_dat=%3Cproquest_RIE%3E2811733274%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811733274&rft_id=info:pmid/&rft_ieee_id=10073648&rfr_iscdi=true |