Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome
Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | He, Wenbin Shi, Zeyu Liu, Yinxia Liu, Ting Du, Jinguang Ma, Jun Cao, Yang Ming, Wuyi |
description | Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier. |
doi_str_mv | 10.1109/ACCESS.2023.3257045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10068545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10068545</ieee_id><doaj_id>oai_doaj_org_article_985d9e95b47d482faeac62169f6dd191</doaj_id><sourcerecordid>2795802527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbZYVFPUXrIeA5xnz0elOjjLoKgh7UM-hJqk4Gbo7bpJG5t-b2ZbFulRR9d6rol7T_GJ0zRjVN7ebzd3z85pTLtaCy5628kdzxlmnV0KK7ue3-rS5zHlPa6jakv1Zs79HKHNC4ucc4kTsADkHHzCRj1B2xB0mGIMlHxjediUTHxOB7RTTCEMoB-KwoC1HZvQExinEUtF-mIMjFoeB2F2KY8xxxIvmxMOQ8fIrnzev93cvm4fV05_fj5vbp5VtqS4rr6mlTAmphAentVBOUmuV6L1G8NBy1nYA6OqQb7WwXjIhuZK9ZlyjFOfN46LrIuzNewojpIOJEMy_RkxvBlK9ckCjlXQatdy2vWsV94Bgu-O3fOcc06xqXS9a7yn-nTEXs49zmur5hvdaKsol7ytKLCibYs4J_f-tjJqjR2bxyBw9Ml8eVdbVwgqI-I1BOyXr-BO48Y7C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795802527</pqid></control><display><type>article</type><title>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>He, Wenbin ; Shi, Zeyu ; Liu, Yinxia ; Liu, Ting ; Du, Jinguang ; Ma, Jun ; Cao, Yang ; Ming, Wuyi</creator><creatorcontrib>He, Wenbin ; Shi, Zeyu ; Liu, Yinxia ; Liu, Ting ; Du, Jinguang ; Ma, Jun ; Cao, Yang ; Ming, Wuyi</creatorcontrib><description>Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3257045</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Abnormalities ; Algorithms ; Biological cells ; Chromosome karyotype analysis ; Chromosomes ; Classifiers ; Convolutional neural networks ; Data augmentation ; Deep learning ; Dynamic weighting ; Feature extraction ; Feature fusion classifier ; Heuristic algorithms ; Hospitals ; Machine learning ; Machine vision ; Model fusion ; Neurons</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</citedby><cites>FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</cites><orcidid>0000-0003-4336-179X ; 0000-0003-4120-706X ; 0009-0006-7719-8387 ; 0009-0004-0415-6536 ; 0000-0003-4742-4372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10068545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Shi, Zeyu</creatorcontrib><creatorcontrib>Liu, Yinxia</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Du, Jinguang</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Ming, Wuyi</creatorcontrib><title>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</title><title>IEEE access</title><addtitle>Access</addtitle><description>Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Biological cells</subject><subject>Chromosome karyotype analysis</subject><subject>Chromosomes</subject><subject>Classifiers</subject><subject>Convolutional neural networks</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Dynamic weighting</subject><subject>Feature extraction</subject><subject>Feature fusion classifier</subject><subject>Heuristic algorithms</subject><subject>Hospitals</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Model fusion</subject><subject>Neurons</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbZYVFPUXrIeA5xnz0elOjjLoKgh7UM-hJqk4Gbo7bpJG5t-b2ZbFulRR9d6rol7T_GJ0zRjVN7ebzd3z85pTLtaCy5628kdzxlmnV0KK7ue3-rS5zHlPa6jakv1Zs79HKHNC4ucc4kTsADkHHzCRj1B2xB0mGIMlHxjediUTHxOB7RTTCEMoB-KwoC1HZvQExinEUtF-mIMjFoeB2F2KY8xxxIvmxMOQ8fIrnzev93cvm4fV05_fj5vbp5VtqS4rr6mlTAmphAentVBOUmuV6L1G8NBy1nYA6OqQb7WwXjIhuZK9ZlyjFOfN46LrIuzNewojpIOJEMy_RkxvBlK9ckCjlXQatdy2vWsV94Bgu-O3fOcc06xqXS9a7yn-nTEXs49zmur5hvdaKsol7ytKLCibYs4J_f-tjJqjR2bxyBw9Ml8eVdbVwgqI-I1BOyXr-BO48Y7C</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>He, Wenbin</creator><creator>Shi, Zeyu</creator><creator>Liu, Yinxia</creator><creator>Liu, Ting</creator><creator>Du, Jinguang</creator><creator>Ma, Jun</creator><creator>Cao, Yang</creator><creator>Ming, Wuyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4336-179X</orcidid><orcidid>https://orcid.org/0000-0003-4120-706X</orcidid><orcidid>https://orcid.org/0009-0006-7719-8387</orcidid><orcidid>https://orcid.org/0009-0004-0415-6536</orcidid><orcidid>https://orcid.org/0000-0003-4742-4372</orcidid></search><sort><creationdate>20230101</creationdate><title>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</title><author>He, Wenbin ; Shi, Zeyu ; Liu, Yinxia ; Liu, Ting ; Du, Jinguang ; Ma, Jun ; Cao, Yang ; Ming, Wuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Biological cells</topic><topic>Chromosome karyotype analysis</topic><topic>Chromosomes</topic><topic>Classifiers</topic><topic>Convolutional neural networks</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Dynamic weighting</topic><topic>Feature extraction</topic><topic>Feature fusion classifier</topic><topic>Heuristic algorithms</topic><topic>Hospitals</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Model fusion</topic><topic>Neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Shi, Zeyu</creatorcontrib><creatorcontrib>Liu, Yinxia</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Du, Jinguang</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Ming, Wuyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wenbin</au><au>Shi, Zeyu</au><au>Liu, Yinxia</au><au>Liu, Ting</au><au>Du, Jinguang</au><au>Ma, Jun</au><au>Cao, Yang</au><au>Ming, Wuyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3257045</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4336-179X</orcidid><orcidid>https://orcid.org/0000-0003-4120-706X</orcidid><orcidid>https://orcid.org/0009-0006-7719-8387</orcidid><orcidid>https://orcid.org/0009-0004-0415-6536</orcidid><orcidid>https://orcid.org/0000-0003-4742-4372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10068545 |
source | Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Abnormalities Algorithms Biological cells Chromosome karyotype analysis Chromosomes Classifiers Convolutional neural networks Data augmentation Deep learning Dynamic weighting Feature extraction Feature fusion classifier Heuristic algorithms Hospitals Machine learning Machine vision Model fusion Neurons |
title | Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20fusion%20classifier%20with%20dynamic%20weights%20for%20abnormality%20detection%20of%20amniotic%20fluid%20cell%20chromosome&rft.jtitle=IEEE%20access&rft.au=He,%20Wenbin&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3257045&rft_dat=%3Cproquest_ieee_%3E2795802527%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795802527&rft_id=info:pmid/&rft_ieee_id=10068545&rft_doaj_id=oai_doaj_org_article_985d9e95b47d482faeac62169f6dd191&rfr_iscdi=true |