Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome

Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: He, Wenbin, Shi, Zeyu, Liu, Yinxia, Liu, Ting, Du, Jinguang, Ma, Jun, Cao, Yang, Ming, Wuyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator He, Wenbin
Shi, Zeyu
Liu, Yinxia
Liu, Ting
Du, Jinguang
Ma, Jun
Cao, Yang
Ming, Wuyi
description Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.
doi_str_mv 10.1109/ACCESS.2023.3257045
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10068545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10068545</ieee_id><doaj_id>oai_doaj_org_article_985d9e95b47d482faeac62169f6dd191</doaj_id><sourcerecordid>2795802527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbZYVFPUXrIeA5xnz0elOjjLoKgh7UM-hJqk4Gbo7bpJG5t-b2ZbFulRR9d6rol7T_GJ0zRjVN7ebzd3z85pTLtaCy5628kdzxlmnV0KK7ue3-rS5zHlPa6jakv1Zs79HKHNC4ucc4kTsADkHHzCRj1B2xB0mGIMlHxjediUTHxOB7RTTCEMoB-KwoC1HZvQExinEUtF-mIMjFoeB2F2KY8xxxIvmxMOQ8fIrnzev93cvm4fV05_fj5vbp5VtqS4rr6mlTAmphAentVBOUmuV6L1G8NBy1nYA6OqQb7WwXjIhuZK9ZlyjFOfN46LrIuzNewojpIOJEMy_RkxvBlK9ckCjlXQatdy2vWsV94Bgu-O3fOcc06xqXS9a7yn-nTEXs49zmur5hvdaKsol7ytKLCibYs4J_f-tjJqjR2bxyBw9Ml8eVdbVwgqI-I1BOyXr-BO48Y7C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795802527</pqid></control><display><type>article</type><title>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>He, Wenbin ; Shi, Zeyu ; Liu, Yinxia ; Liu, Ting ; Du, Jinguang ; Ma, Jun ; Cao, Yang ; Ming, Wuyi</creator><creatorcontrib>He, Wenbin ; Shi, Zeyu ; Liu, Yinxia ; Liu, Ting ; Du, Jinguang ; Ma, Jun ; Cao, Yang ; Ming, Wuyi</creatorcontrib><description>Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3257045</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Abnormalities ; Algorithms ; Biological cells ; Chromosome karyotype analysis ; Chromosomes ; Classifiers ; Convolutional neural networks ; Data augmentation ; Deep learning ; Dynamic weighting ; Feature extraction ; Feature fusion classifier ; Heuristic algorithms ; Hospitals ; Machine learning ; Machine vision ; Model fusion ; Neurons</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</citedby><cites>FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</cites><orcidid>0000-0003-4336-179X ; 0000-0003-4120-706X ; 0009-0006-7719-8387 ; 0009-0004-0415-6536 ; 0000-0003-4742-4372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10068545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Shi, Zeyu</creatorcontrib><creatorcontrib>Liu, Yinxia</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Du, Jinguang</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Ming, Wuyi</creatorcontrib><title>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</title><title>IEEE access</title><addtitle>Access</addtitle><description>Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Biological cells</subject><subject>Chromosome karyotype analysis</subject><subject>Chromosomes</subject><subject>Classifiers</subject><subject>Convolutional neural networks</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Dynamic weighting</subject><subject>Feature extraction</subject><subject>Feature fusion classifier</subject><subject>Heuristic algorithms</subject><subject>Hospitals</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Model fusion</subject><subject>Neurons</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbZYVFPUXrIeA5xnz0elOjjLoKgh7UM-hJqk4Gbo7bpJG5t-b2ZbFulRR9d6rol7T_GJ0zRjVN7ebzd3z85pTLtaCy5628kdzxlmnV0KK7ue3-rS5zHlPa6jakv1Zs79HKHNC4ucc4kTsADkHHzCRj1B2xB0mGIMlHxjediUTHxOB7RTTCEMoB-KwoC1HZvQExinEUtF-mIMjFoeB2F2KY8xxxIvmxMOQ8fIrnzev93cvm4fV05_fj5vbp5VtqS4rr6mlTAmphAentVBOUmuV6L1G8NBy1nYA6OqQb7WwXjIhuZK9ZlyjFOfN46LrIuzNewojpIOJEMy_RkxvBlK9ckCjlXQatdy2vWsV94Bgu-O3fOcc06xqXS9a7yn-nTEXs49zmur5hvdaKsol7ytKLCibYs4J_f-tjJqjR2bxyBw9Ml8eVdbVwgqI-I1BOyXr-BO48Y7C</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>He, Wenbin</creator><creator>Shi, Zeyu</creator><creator>Liu, Yinxia</creator><creator>Liu, Ting</creator><creator>Du, Jinguang</creator><creator>Ma, Jun</creator><creator>Cao, Yang</creator><creator>Ming, Wuyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4336-179X</orcidid><orcidid>https://orcid.org/0000-0003-4120-706X</orcidid><orcidid>https://orcid.org/0009-0006-7719-8387</orcidid><orcidid>https://orcid.org/0009-0004-0415-6536</orcidid><orcidid>https://orcid.org/0000-0003-4742-4372</orcidid></search><sort><creationdate>20230101</creationdate><title>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</title><author>He, Wenbin ; Shi, Zeyu ; Liu, Yinxia ; Liu, Ting ; Du, Jinguang ; Ma, Jun ; Cao, Yang ; Ming, Wuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-f90c0183583fad9938d50cc837f9eafa42146aaedad92b93cf513528579129e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Biological cells</topic><topic>Chromosome karyotype analysis</topic><topic>Chromosomes</topic><topic>Classifiers</topic><topic>Convolutional neural networks</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Dynamic weighting</topic><topic>Feature extraction</topic><topic>Feature fusion classifier</topic><topic>Heuristic algorithms</topic><topic>Hospitals</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Model fusion</topic><topic>Neurons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Shi, Zeyu</creatorcontrib><creatorcontrib>Liu, Yinxia</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Du, Jinguang</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Ming, Wuyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wenbin</au><au>Shi, Zeyu</au><au>Liu, Yinxia</au><au>Liu, Ting</au><au>Du, Jinguang</au><au>Ma, Jun</au><au>Cao, Yang</au><au>Ming, Wuyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Chromosomal karyotype is important to determine whether a newborn has a genetic disorder. There are two main categories of chromosomal abnormalities, structural abnormalities in which the chromosome structure is altered, and chromosome number abnormalities. Manual karyotyping is complex and takes a lot of time because it requires a high degree of domain expertise. Based on this investigation proposes a new method of chromosome defect detection based on deep learning with 20,299 chromosome images from Dongguan Kanghua Hospital as data and integrates the diversity of chromosome features, and trains to propose a classifier model based on feature fusion for chromosome abnormality detection. We put forward a feature fusion classifier with dynamic weights (FFCDW) for chromosomal abnormality detection, after data augmentation with three deep learning networks, ResNet, SENet, and VGG19, the three trained models are combined using a dynamic weighting approach. Experiments prove the FFCDW method outperforms these mainstream models of ResNet, SENet, and VGG19. The proposed method based on FFCDW achieves precision of 0.8902 and F1-score of 0.8805 with a small standard deviation (0.00903 and 0.00892, respectively). In addition, the algorithm can automatically assign weights based on the results of a single model, and the strategy with dynamic weights outperforms the strategy with fixed weights in the proposed feature fusion classifier.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3257045</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4336-179X</orcidid><orcidid>https://orcid.org/0000-0003-4120-706X</orcidid><orcidid>https://orcid.org/0009-0006-7719-8387</orcidid><orcidid>https://orcid.org/0009-0004-0415-6536</orcidid><orcidid>https://orcid.org/0000-0003-4742-4372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10068545
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Abnormalities
Algorithms
Biological cells
Chromosome karyotype analysis
Chromosomes
Classifiers
Convolutional neural networks
Data augmentation
Deep learning
Dynamic weighting
Feature extraction
Feature fusion classifier
Heuristic algorithms
Hospitals
Machine learning
Machine vision
Model fusion
Neurons
title Feature fusion classifier with dynamic weights for abnormality detection of amniotic fluid cell chromosome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20fusion%20classifier%20with%20dynamic%20weights%20for%20abnormality%20detection%20of%20amniotic%20fluid%20cell%20chromosome&rft.jtitle=IEEE%20access&rft.au=He,%20Wenbin&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3257045&rft_dat=%3Cproquest_ieee_%3E2795802527%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795802527&rft_id=info:pmid/&rft_ieee_id=10068545&rft_doaj_id=oai_doaj_org_article_985d9e95b47d482faeac62169f6dd191&rfr_iscdi=true