Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs

Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2023-09, Vol.43 (5), p.1-9
Hauptverfasser: Livesay, Neal, Jonatan, Gilbert, Mora, Evelio, Shivdikar, Kaustubh, Agrawal, Rashmi, Joshi, Ajay, Abellan, Jose L., Kim, John, Kaeli, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 5
container_start_page 1
container_title IEEE MICRO
container_volume 43
creator Livesay, Neal
Jonatan, Gilbert
Mora, Evelio
Shivdikar, Kaustubh
Agrawal, Rashmi
Joshi, Ajay
Abellan, Jose L.
Kim, John
Kaeli, David
description Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.
doi_str_mv 10.1109/MM.2023.3253052
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10068510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10068510</ieee_id><sourcerecordid>2864340097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-8238aef1927dc6d1960db3acb0bdb790adad4cdada4497a4f975f943139f0a783</originalsourceid><addsrcrecordid>eNpNkL1rwzAQxUVpoWnauUsHQ2cnpw9b1hhCPgox7dDMQpalRiGxXUkZ8t9XIRnKHfc4-L07eAi9YphgDGJa1xMChE4oKSgU5A6NsKA8Z5jRezQCwkmOOSWP6CmEPUBCoBqh1UxrczBeRdf9ZEvXuWiSmEObzbyLu6OJTme299m6P6bywy7ti0778xBd32WpV1_b8IwerDoE83LTMdouF9_zdb75XH3MZ5tck6qIeUVopYzFgvBWly0WJbQNVbqBpm24ANWqluk0FGOCK2YFL6xgFFNhQfGKjtH79e7g-9-TCVHu-5Pv0ktJqpJRBiB4oqZXSvs-BG-sHLw7Kn-WGOQlLVnX8pKWvKWVHG9XhzPG_KOhrAoM9A-gy2Vh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864340097</pqid></control><display><type>article</type><title>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</title><source>IEEE Electronic Library (IEL)</source><creator>Livesay, Neal ; Jonatan, Gilbert ; Mora, Evelio ; Shivdikar, Kaustubh ; Agrawal, Rashmi ; Joshi, Ajay ; Abellan, Jose L. ; Kim, John ; Kaeli, David</creator><creatorcontrib>Livesay, Neal ; Jonatan, Gilbert ; Mora, Evelio ; Shivdikar, Kaustubh ; Agrawal, Rashmi ; Joshi, Ajay ; Abellan, Jose L. ; Kim, John ; Kaeli, David</creatorcontrib><description>Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2023.3253052</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Arithmetic ; Cloud computing ; Computational efficiency ; Cybersecurity ; Encryption ; Fields (mathematics) ; Graphics processing units ; Homomorphic encryption ; Libraries ; Multiplication ; Parallel processing ; Polynomials ; Transforms ; Upper bound</subject><ispartof>IEEE MICRO, 2023-09, Vol.43 (5), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-8238aef1927dc6d1960db3acb0bdb790adad4cdada4497a4f975f943139f0a783</cites><orcidid>0000-0002-9461-0170 ; 0000-0001-9157-5157 ; 0000-0003-3958-3891 ; 0000-0003-3550-720X ; 0000-0002-4449-7974 ; 0000-0002-5692-0151 ; 0000-0002-3836-6353 ; 0000-0003-4388-9850 ; 0000-0002-3256-9942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10068510$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids></links><search><creatorcontrib>Livesay, Neal</creatorcontrib><creatorcontrib>Jonatan, Gilbert</creatorcontrib><creatorcontrib>Mora, Evelio</creatorcontrib><creatorcontrib>Shivdikar, Kaustubh</creatorcontrib><creatorcontrib>Agrawal, Rashmi</creatorcontrib><creatorcontrib>Joshi, Ajay</creatorcontrib><creatorcontrib>Abellan, Jose L.</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><title>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.</description><subject>Arithmetic</subject><subject>Cloud computing</subject><subject>Computational efficiency</subject><subject>Cybersecurity</subject><subject>Encryption</subject><subject>Fields (mathematics)</subject><subject>Graphics processing units</subject><subject>Homomorphic encryption</subject><subject>Libraries</subject><subject>Multiplication</subject><subject>Parallel processing</subject><subject>Polynomials</subject><subject>Transforms</subject><subject>Upper bound</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1rwzAQxUVpoWnauUsHQ2cnpw9b1hhCPgox7dDMQpalRiGxXUkZ8t9XIRnKHfc4-L07eAi9YphgDGJa1xMChE4oKSgU5A6NsKA8Z5jRezQCwkmOOSWP6CmEPUBCoBqh1UxrczBeRdf9ZEvXuWiSmEObzbyLu6OJTme299m6P6bywy7ti0778xBd32WpV1_b8IwerDoE83LTMdouF9_zdb75XH3MZ5tck6qIeUVopYzFgvBWly0WJbQNVbqBpm24ANWqluk0FGOCK2YFL6xgFFNhQfGKjtH79e7g-9-TCVHu-5Pv0ktJqpJRBiB4oqZXSvs-BG-sHLw7Kn-WGOQlLVnX8pKWvKWVHG9XhzPG_KOhrAoM9A-gy2Vh</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Livesay, Neal</creator><creator>Jonatan, Gilbert</creator><creator>Mora, Evelio</creator><creator>Shivdikar, Kaustubh</creator><creator>Agrawal, Rashmi</creator><creator>Joshi, Ajay</creator><creator>Abellan, Jose L.</creator><creator>Kim, John</creator><creator>Kaeli, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9461-0170</orcidid><orcidid>https://orcid.org/0000-0001-9157-5157</orcidid><orcidid>https://orcid.org/0000-0003-3958-3891</orcidid><orcidid>https://orcid.org/0000-0003-3550-720X</orcidid><orcidid>https://orcid.org/0000-0002-4449-7974</orcidid><orcidid>https://orcid.org/0000-0002-5692-0151</orcidid><orcidid>https://orcid.org/0000-0002-3836-6353</orcidid><orcidid>https://orcid.org/0000-0003-4388-9850</orcidid><orcidid>https://orcid.org/0000-0002-3256-9942</orcidid></search><sort><creationdate>20230901</creationdate><title>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</title><author>Livesay, Neal ; Jonatan, Gilbert ; Mora, Evelio ; Shivdikar, Kaustubh ; Agrawal, Rashmi ; Joshi, Ajay ; Abellan, Jose L. ; Kim, John ; Kaeli, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-8238aef1927dc6d1960db3acb0bdb790adad4cdada4497a4f975f943139f0a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arithmetic</topic><topic>Cloud computing</topic><topic>Computational efficiency</topic><topic>Cybersecurity</topic><topic>Encryption</topic><topic>Fields (mathematics)</topic><topic>Graphics processing units</topic><topic>Homomorphic encryption</topic><topic>Libraries</topic><topic>Multiplication</topic><topic>Parallel processing</topic><topic>Polynomials</topic><topic>Transforms</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livesay, Neal</creatorcontrib><creatorcontrib>Jonatan, Gilbert</creatorcontrib><creatorcontrib>Mora, Evelio</creatorcontrib><creatorcontrib>Shivdikar, Kaustubh</creatorcontrib><creatorcontrib>Agrawal, Rashmi</creatorcontrib><creatorcontrib>Joshi, Ajay</creatorcontrib><creatorcontrib>Abellan, Jose L.</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livesay, Neal</au><au>Jonatan, Gilbert</au><au>Mora, Evelio</au><au>Shivdikar, Kaustubh</au><au>Agrawal, Rashmi</au><au>Joshi, Ajay</au><au>Abellan, Jose L.</au><au>Kim, John</au><au>Kaeli, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>43</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2023.3253052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9461-0170</orcidid><orcidid>https://orcid.org/0000-0001-9157-5157</orcidid><orcidid>https://orcid.org/0000-0003-3958-3891</orcidid><orcidid>https://orcid.org/0000-0003-3550-720X</orcidid><orcidid>https://orcid.org/0000-0002-4449-7974</orcidid><orcidid>https://orcid.org/0000-0002-5692-0151</orcidid><orcidid>https://orcid.org/0000-0002-3836-6353</orcidid><orcidid>https://orcid.org/0000-0003-4388-9850</orcidid><orcidid>https://orcid.org/0000-0002-3256-9942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2023-09, Vol.43 (5), p.1-9
issn 0272-1732
1937-4143
language eng
recordid cdi_ieee_primary_10068510
source IEEE Electronic Library (IEL)
subjects Arithmetic
Cloud computing
Computational efficiency
Cybersecurity
Encryption
Fields (mathematics)
Graphics processing units
Homomorphic encryption
Libraries
Multiplication
Parallel processing
Polynomials
Transforms
Upper bound
title Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Finite%20Field%20Arithmetic%20for%20Homomorphic%20Encryption%20on%20GPUs&rft.jtitle=IEEE%20MICRO&rft.au=Livesay,%20Neal&rft.date=2023-09-01&rft.volume=43&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2023.3253052&rft_dat=%3Cproquest_ieee_%3E2864340097%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864340097&rft_id=info:pmid/&rft_ieee_id=10068510&rfr_iscdi=true