Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs
Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprece...
Gespeichert in:
Veröffentlicht in: | IEEE MICRO 2023-09, Vol.43 (5), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE MICRO |
container_volume | 43 |
creator | Livesay, Neal Jonatan, Gilbert Mora, Evelio Shivdikar, Kaustubh Agrawal, Rashmi Joshi, Ajay Abellan, Jose L. Kim, John Kaeli, David |
description | Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical. |
doi_str_mv | 10.1109/MM.2023.3253052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10068510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10068510</ieee_id><sourcerecordid>2864340097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-8238aef1927dc6d1960db3acb0bdb790adad4cdada4497a4f975f943139f0a783</originalsourceid><addsrcrecordid>eNpNkL1rwzAQxUVpoWnauUsHQ2cnpw9b1hhCPgox7dDMQpalRiGxXUkZ8t9XIRnKHfc4-L07eAi9YphgDGJa1xMChE4oKSgU5A6NsKA8Z5jRezQCwkmOOSWP6CmEPUBCoBqh1UxrczBeRdf9ZEvXuWiSmEObzbyLu6OJTme299m6P6bywy7ti0778xBd32WpV1_b8IwerDoE83LTMdouF9_zdb75XH3MZ5tck6qIeUVopYzFgvBWly0WJbQNVbqBpm24ANWqluk0FGOCK2YFL6xgFFNhQfGKjtH79e7g-9-TCVHu-5Pv0ktJqpJRBiB4oqZXSvs-BG-sHLw7Kn-WGOQlLVnX8pKWvKWVHG9XhzPG_KOhrAoM9A-gy2Vh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864340097</pqid></control><display><type>article</type><title>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</title><source>IEEE Electronic Library (IEL)</source><creator>Livesay, Neal ; Jonatan, Gilbert ; Mora, Evelio ; Shivdikar, Kaustubh ; Agrawal, Rashmi ; Joshi, Ajay ; Abellan, Jose L. ; Kim, John ; Kaeli, David</creator><creatorcontrib>Livesay, Neal ; Jonatan, Gilbert ; Mora, Evelio ; Shivdikar, Kaustubh ; Agrawal, Rashmi ; Joshi, Ajay ; Abellan, Jose L. ; Kim, John ; Kaeli, David</creatorcontrib><description>Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2023.3253052</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Arithmetic ; Cloud computing ; Computational efficiency ; Cybersecurity ; Encryption ; Fields (mathematics) ; Graphics processing units ; Homomorphic encryption ; Libraries ; Multiplication ; Parallel processing ; Polynomials ; Transforms ; Upper bound</subject><ispartof>IEEE MICRO, 2023-09, Vol.43 (5), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-8238aef1927dc6d1960db3acb0bdb790adad4cdada4497a4f975f943139f0a783</cites><orcidid>0000-0002-9461-0170 ; 0000-0001-9157-5157 ; 0000-0003-3958-3891 ; 0000-0003-3550-720X ; 0000-0002-4449-7974 ; 0000-0002-5692-0151 ; 0000-0002-3836-6353 ; 0000-0003-4388-9850 ; 0000-0002-3256-9942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10068510$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids></links><search><creatorcontrib>Livesay, Neal</creatorcontrib><creatorcontrib>Jonatan, Gilbert</creatorcontrib><creatorcontrib>Mora, Evelio</creatorcontrib><creatorcontrib>Shivdikar, Kaustubh</creatorcontrib><creatorcontrib>Agrawal, Rashmi</creatorcontrib><creatorcontrib>Joshi, Ajay</creatorcontrib><creatorcontrib>Abellan, Jose L.</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><title>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.</description><subject>Arithmetic</subject><subject>Cloud computing</subject><subject>Computational efficiency</subject><subject>Cybersecurity</subject><subject>Encryption</subject><subject>Fields (mathematics)</subject><subject>Graphics processing units</subject><subject>Homomorphic encryption</subject><subject>Libraries</subject><subject>Multiplication</subject><subject>Parallel processing</subject><subject>Polynomials</subject><subject>Transforms</subject><subject>Upper bound</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1rwzAQxUVpoWnauUsHQ2cnpw9b1hhCPgox7dDMQpalRiGxXUkZ8t9XIRnKHfc4-L07eAi9YphgDGJa1xMChE4oKSgU5A6NsKA8Z5jRezQCwkmOOSWP6CmEPUBCoBqh1UxrczBeRdf9ZEvXuWiSmEObzbyLu6OJTme299m6P6bywy7ti0778xBd32WpV1_b8IwerDoE83LTMdouF9_zdb75XH3MZ5tck6qIeUVopYzFgvBWly0WJbQNVbqBpm24ANWqluk0FGOCK2YFL6xgFFNhQfGKjtH79e7g-9-TCVHu-5Pv0ktJqpJRBiB4oqZXSvs-BG-sHLw7Kn-WGOQlLVnX8pKWvKWVHG9XhzPG_KOhrAoM9A-gy2Vh</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Livesay, Neal</creator><creator>Jonatan, Gilbert</creator><creator>Mora, Evelio</creator><creator>Shivdikar, Kaustubh</creator><creator>Agrawal, Rashmi</creator><creator>Joshi, Ajay</creator><creator>Abellan, Jose L.</creator><creator>Kim, John</creator><creator>Kaeli, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9461-0170</orcidid><orcidid>https://orcid.org/0000-0001-9157-5157</orcidid><orcidid>https://orcid.org/0000-0003-3958-3891</orcidid><orcidid>https://orcid.org/0000-0003-3550-720X</orcidid><orcidid>https://orcid.org/0000-0002-4449-7974</orcidid><orcidid>https://orcid.org/0000-0002-5692-0151</orcidid><orcidid>https://orcid.org/0000-0002-3836-6353</orcidid><orcidid>https://orcid.org/0000-0003-4388-9850</orcidid><orcidid>https://orcid.org/0000-0002-3256-9942</orcidid></search><sort><creationdate>20230901</creationdate><title>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</title><author>Livesay, Neal ; Jonatan, Gilbert ; Mora, Evelio ; Shivdikar, Kaustubh ; Agrawal, Rashmi ; Joshi, Ajay ; Abellan, Jose L. ; Kim, John ; Kaeli, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-8238aef1927dc6d1960db3acb0bdb790adad4cdada4497a4f975f943139f0a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arithmetic</topic><topic>Cloud computing</topic><topic>Computational efficiency</topic><topic>Cybersecurity</topic><topic>Encryption</topic><topic>Fields (mathematics)</topic><topic>Graphics processing units</topic><topic>Homomorphic encryption</topic><topic>Libraries</topic><topic>Multiplication</topic><topic>Parallel processing</topic><topic>Polynomials</topic><topic>Transforms</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livesay, Neal</creatorcontrib><creatorcontrib>Jonatan, Gilbert</creatorcontrib><creatorcontrib>Mora, Evelio</creatorcontrib><creatorcontrib>Shivdikar, Kaustubh</creatorcontrib><creatorcontrib>Agrawal, Rashmi</creatorcontrib><creatorcontrib>Joshi, Ajay</creatorcontrib><creatorcontrib>Abellan, Jose L.</creatorcontrib><creatorcontrib>Kim, John</creatorcontrib><creatorcontrib>Kaeli, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livesay, Neal</au><au>Jonatan, Gilbert</au><au>Mora, Evelio</au><au>Shivdikar, Kaustubh</au><au>Agrawal, Rashmi</au><au>Joshi, Ajay</au><au>Abellan, Jose L.</au><au>Kim, John</au><au>Kaeli, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>43</volume><issue>5</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables computation directly on encrypted data, making it a compelling solution for security in cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum attacks. Although FHE offers unprecedented potential for security, current implementations suffer from prohibitively high latency. Finite field arithmetic operations, particularly the multiplication of high-degree polynomials, are key computational bottlenecks. The parallel processing capabilities provided by modern Graphical Processing Units (GPUs) make them compelling candidates to target these highly parallelizable workloads. In this article, we discuss methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE practical.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2023.3253052</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9461-0170</orcidid><orcidid>https://orcid.org/0000-0001-9157-5157</orcidid><orcidid>https://orcid.org/0000-0003-3958-3891</orcidid><orcidid>https://orcid.org/0000-0003-3550-720X</orcidid><orcidid>https://orcid.org/0000-0002-4449-7974</orcidid><orcidid>https://orcid.org/0000-0002-5692-0151</orcidid><orcidid>https://orcid.org/0000-0002-3836-6353</orcidid><orcidid>https://orcid.org/0000-0003-4388-9850</orcidid><orcidid>https://orcid.org/0000-0002-3256-9942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-1732 |
ispartof | IEEE MICRO, 2023-09, Vol.43 (5), p.1-9 |
issn | 0272-1732 1937-4143 |
language | eng |
recordid | cdi_ieee_primary_10068510 |
source | IEEE Electronic Library (IEL) |
subjects | Arithmetic Cloud computing Computational efficiency Cybersecurity Encryption Fields (mathematics) Graphics processing units Homomorphic encryption Libraries Multiplication Parallel processing Polynomials Transforms Upper bound |
title | Accelerating Finite Field Arithmetic for Homomorphic Encryption on GPUs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Finite%20Field%20Arithmetic%20for%20Homomorphic%20Encryption%20on%20GPUs&rft.jtitle=IEEE%20MICRO&rft.au=Livesay,%20Neal&rft.date=2023-09-01&rft.volume=43&rft.issue=5&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2023.3253052&rft_dat=%3Cproquest_ieee_%3E2864340097%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864340097&rft_id=info:pmid/&rft_ieee_id=10068510&rfr_iscdi=true |