Fabrication of a 64-Pixel TES Microcalorimeter Array With Iron Absorbers Uniquely Designed for 14.4-KeV Solar Axion Search
If a hypothetical elementary particle called an axion exists, to solve the strong CP problem, a ^{57}Fe nucleus in the solar core could emit a 14.4-keV monochromatic axion through the M1 transition. If such axions are once more transformed into photons by a ^{57}Fe absorber, a transition edge sensor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 33 |
creator | Yagi, Yuta Hayashi, Tasuku Tanaka, Keita Miyagawa, Rikuta Ota, Ryo Yamasaki, Noriko Y. Mitsuda, Kazuhisa Yoshida, Nao Saito, Mikiko Homma, Takayuki |
description | If a hypothetical elementary particle called an axion exists, to solve the strong CP problem, a ^{57}Fe nucleus in the solar core could emit a 14.4-keV monochromatic axion through the M1 transition. If such axions are once more transformed into photons by a ^{57}Fe absorber, a transition edge sensor (TES) X-ray microcalorimeter should be able to detect them efficiently. We have designed and fabricated a dedicated 64-pixel TES array with iron absorbers for the solar axion search. In order to decrease the effect of iron magnetization on spectroscopic performance, the iron absorber is placed next to the TES while maintaining a certain distance. A gold thermal transfer strap connects them. We have accomplished the electroplating of gold straps with high thermal conductivity. The residual resistivity ratio (RRR) was over 23, more than eight times higher than a previous evaporated strap. In addition, we successfully electroplated pure-iron films of more than a few micrometers in thickness for absorbers and a fabricated 64-pixel TES calorimeter structure. |
doi_str_mv | 10.1109/TASC.2023.3254488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10063946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10063946</ieee_id><sourcerecordid>2793209200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1e66509aa23eac5a694c07fc4494cad61c39c6233f9e63ef89d4d91d4f704d863</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxRujiYh-ABMPm3hu3f90jw2CEjGaAHpslu1UllQWd0sCfnq3gYOneYf3m5n3kuSW4IwQrB7mxWyYUUxZxqjgPM_Pkh4RIk-pIOI8aixImlPKLpOrENYYE55z0Ut-x3rprdGtdRvkaqSR5Om73UOD5qMZerXGO6Mb5-03tOBR4b0-oE_brtDER6RYBueX4ANabOzPDpoDeoRgvzZQodp5RHjG0xf4QDPX6Ijvuzsz0N6srpOLWjcBbk6znyzGo_nwOZ2-PU2GxTQ1lMs2JSClwEprykAboaXiBg9qw3kUupLEMGUkZaxWIBnUuap4pUjF6wHmVS5ZP7k_7t16Fz8Mbbl2O7-JJ0s6UIxiRTGOLnJ0xcAheKjLbcys_aEkuOwqLruKy67i8lRxZO6OjAWAf34smeKS_QGDWHaB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793209200</pqid></control><display><type>article</type><title>Fabrication of a 64-Pixel TES Microcalorimeter Array With Iron Absorbers Uniquely Designed for 14.4-KeV Solar Axion Search</title><source>IEEE Electronic Library (IEL)</source><creator>Yagi, Yuta ; Hayashi, Tasuku ; Tanaka, Keita ; Miyagawa, Rikuta ; Ota, Ryo ; Yamasaki, Noriko Y. ; Mitsuda, Kazuhisa ; Yoshida, Nao ; Saito, Mikiko ; Homma, Takayuki</creator><creatorcontrib>Yagi, Yuta ; Hayashi, Tasuku ; Tanaka, Keita ; Miyagawa, Rikuta ; Ota, Ryo ; Yamasaki, Noriko Y. ; Mitsuda, Kazuhisa ; Yoshida, Nao ; Saito, Mikiko ; Homma, Takayuki</creatorcontrib><description><![CDATA[If a hypothetical elementary particle called an axion exists, to solve the strong CP problem, a <inline-formula><tex-math notation="LaTeX">^{57}</tex-math></inline-formula>Fe nucleus in the solar core could emit a 14.4-keV monochromatic axion through the M1 transition. If such axions are once more transformed into photons by a <inline-formula><tex-math notation="LaTeX">^{57}</tex-math></inline-formula>Fe absorber, a transition edge sensor (TES) X-ray microcalorimeter should be able to detect them efficiently. We have designed and fabricated a dedicated 64-pixel TES array with iron absorbers for the solar axion search. In order to decrease the effect of iron magnetization on spectroscopic performance, the iron absorber is placed next to the TES while maintaining a certain distance. A gold thermal transfer strap connects them. We have accomplished the electroplating of gold straps with high thermal conductivity. The residual resistivity ratio (RRR) was over 23, more than eight times higher than a previous evaporated strap. In addition, we successfully electroplated pure-iron films of more than a few micrometers in thickness for absorbers and a fabricated 64-pixel TES calorimeter structure.]]></description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3254488</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^{57}</tex-math> </inline-formula>Fe ; Absorbers ; Arrays ; Conductivity ; Electrical resistance measurement ; Electroplating ; Elementary particles ; Gold ; Iron ; Microcalorimeters ; Micrometers ; Monochromatic axion ; Pixels ; Residual resistivity ; Resistance ; Resistivity ratio ; Solar axions ; Straps ; Temperature measurement ; TES ; Thermal conductivity ; Thickness</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1e66509aa23eac5a694c07fc4494cad61c39c6233f9e63ef89d4d91d4f704d863</cites><orcidid>0000-0002-6587-9314 ; 0000-0002-1966-3408 ; 0000-0003-4885-5537 ; 0000-0001-8550-9495 ; 0000-0002-7107-8468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10063946$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10063946$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yagi, Yuta</creatorcontrib><creatorcontrib>Hayashi, Tasuku</creatorcontrib><creatorcontrib>Tanaka, Keita</creatorcontrib><creatorcontrib>Miyagawa, Rikuta</creatorcontrib><creatorcontrib>Ota, Ryo</creatorcontrib><creatorcontrib>Yamasaki, Noriko Y.</creatorcontrib><creatorcontrib>Mitsuda, Kazuhisa</creatorcontrib><creatorcontrib>Yoshida, Nao</creatorcontrib><creatorcontrib>Saito, Mikiko</creatorcontrib><creatorcontrib>Homma, Takayuki</creatorcontrib><title>Fabrication of a 64-Pixel TES Microcalorimeter Array With Iron Absorbers Uniquely Designed for 14.4-KeV Solar Axion Search</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description><![CDATA[If a hypothetical elementary particle called an axion exists, to solve the strong CP problem, a <inline-formula><tex-math notation="LaTeX">^{57}</tex-math></inline-formula>Fe nucleus in the solar core could emit a 14.4-keV monochromatic axion through the M1 transition. If such axions are once more transformed into photons by a <inline-formula><tex-math notation="LaTeX">^{57}</tex-math></inline-formula>Fe absorber, a transition edge sensor (TES) X-ray microcalorimeter should be able to detect them efficiently. We have designed and fabricated a dedicated 64-pixel TES array with iron absorbers for the solar axion search. In order to decrease the effect of iron magnetization on spectroscopic performance, the iron absorber is placed next to the TES while maintaining a certain distance. A gold thermal transfer strap connects them. We have accomplished the electroplating of gold straps with high thermal conductivity. The residual resistivity ratio (RRR) was over 23, more than eight times higher than a previous evaporated strap. In addition, we successfully electroplated pure-iron films of more than a few micrometers in thickness for absorbers and a fabricated 64-pixel TES calorimeter structure.]]></description><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^{57}</tex-math> </inline-formula>Fe</subject><subject>Absorbers</subject><subject>Arrays</subject><subject>Conductivity</subject><subject>Electrical resistance measurement</subject><subject>Electroplating</subject><subject>Elementary particles</subject><subject>Gold</subject><subject>Iron</subject><subject>Microcalorimeters</subject><subject>Micrometers</subject><subject>Monochromatic axion</subject><subject>Pixels</subject><subject>Residual resistivity</subject><subject>Resistance</subject><subject>Resistivity ratio</subject><subject>Solar axions</subject><subject>Straps</subject><subject>Temperature measurement</subject><subject>TES</subject><subject>Thermal conductivity</subject><subject>Thickness</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAQxRujiYh-ABMPm3hu3f90jw2CEjGaAHpslu1UllQWd0sCfnq3gYOneYf3m5n3kuSW4IwQrB7mxWyYUUxZxqjgPM_Pkh4RIk-pIOI8aixImlPKLpOrENYYE55z0Ut-x3rprdGtdRvkaqSR5Om73UOD5qMZerXGO6Mb5-03tOBR4b0-oE_brtDER6RYBueX4ANabOzPDpoDeoRgvzZQodp5RHjG0xf4QDPX6Ijvuzsz0N6srpOLWjcBbk6znyzGo_nwOZ2-PU2GxTQ1lMs2JSClwEprykAboaXiBg9qw3kUupLEMGUkZaxWIBnUuap4pUjF6wHmVS5ZP7k_7t16Fz8Mbbl2O7-JJ0s6UIxiRTGOLnJ0xcAheKjLbcys_aEkuOwqLruKy67i8lRxZO6OjAWAf34smeKS_QGDWHaB</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yagi, Yuta</creator><creator>Hayashi, Tasuku</creator><creator>Tanaka, Keita</creator><creator>Miyagawa, Rikuta</creator><creator>Ota, Ryo</creator><creator>Yamasaki, Noriko Y.</creator><creator>Mitsuda, Kazuhisa</creator><creator>Yoshida, Nao</creator><creator>Saito, Mikiko</creator><creator>Homma, Takayuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6587-9314</orcidid><orcidid>https://orcid.org/0000-0002-1966-3408</orcidid><orcidid>https://orcid.org/0000-0003-4885-5537</orcidid><orcidid>https://orcid.org/0000-0001-8550-9495</orcidid><orcidid>https://orcid.org/0000-0002-7107-8468</orcidid></search><sort><creationdate>20230801</creationdate><title>Fabrication of a 64-Pixel TES Microcalorimeter Array With Iron Absorbers Uniquely Designed for 14.4-KeV Solar Axion Search</title><author>Yagi, Yuta ; Hayashi, Tasuku ; Tanaka, Keita ; Miyagawa, Rikuta ; Ota, Ryo ; Yamasaki, Noriko Y. ; Mitsuda, Kazuhisa ; Yoshida, Nao ; Saito, Mikiko ; Homma, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1e66509aa23eac5a694c07fc4494cad61c39c6233f9e63ef89d4d91d4f704d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^{57}</tex-math> </inline-formula>Fe</topic><topic>Absorbers</topic><topic>Arrays</topic><topic>Conductivity</topic><topic>Electrical resistance measurement</topic><topic>Electroplating</topic><topic>Elementary particles</topic><topic>Gold</topic><topic>Iron</topic><topic>Microcalorimeters</topic><topic>Micrometers</topic><topic>Monochromatic axion</topic><topic>Pixels</topic><topic>Residual resistivity</topic><topic>Resistance</topic><topic>Resistivity ratio</topic><topic>Solar axions</topic><topic>Straps</topic><topic>Temperature measurement</topic><topic>TES</topic><topic>Thermal conductivity</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yagi, Yuta</creatorcontrib><creatorcontrib>Hayashi, Tasuku</creatorcontrib><creatorcontrib>Tanaka, Keita</creatorcontrib><creatorcontrib>Miyagawa, Rikuta</creatorcontrib><creatorcontrib>Ota, Ryo</creatorcontrib><creatorcontrib>Yamasaki, Noriko Y.</creatorcontrib><creatorcontrib>Mitsuda, Kazuhisa</creatorcontrib><creatorcontrib>Yoshida, Nao</creatorcontrib><creatorcontrib>Saito, Mikiko</creatorcontrib><creatorcontrib>Homma, Takayuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yagi, Yuta</au><au>Hayashi, Tasuku</au><au>Tanaka, Keita</au><au>Miyagawa, Rikuta</au><au>Ota, Ryo</au><au>Yamasaki, Noriko Y.</au><au>Mitsuda, Kazuhisa</au><au>Yoshida, Nao</au><au>Saito, Mikiko</au><au>Homma, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a 64-Pixel TES Microcalorimeter Array With Iron Absorbers Uniquely Designed for 14.4-KeV Solar Axion Search</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract><![CDATA[If a hypothetical elementary particle called an axion exists, to solve the strong CP problem, a <inline-formula><tex-math notation="LaTeX">^{57}</tex-math></inline-formula>Fe nucleus in the solar core could emit a 14.4-keV monochromatic axion through the M1 transition. If such axions are once more transformed into photons by a <inline-formula><tex-math notation="LaTeX">^{57}</tex-math></inline-formula>Fe absorber, a transition edge sensor (TES) X-ray microcalorimeter should be able to detect them efficiently. We have designed and fabricated a dedicated 64-pixel TES array with iron absorbers for the solar axion search. In order to decrease the effect of iron magnetization on spectroscopic performance, the iron absorber is placed next to the TES while maintaining a certain distance. A gold thermal transfer strap connects them. We have accomplished the electroplating of gold straps with high thermal conductivity. The residual resistivity ratio (RRR) was over 23, more than eight times higher than a previous evaporated strap. In addition, we successfully electroplated pure-iron films of more than a few micrometers in thickness for absorbers and a fabricated 64-pixel TES calorimeter structure.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3254488</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6587-9314</orcidid><orcidid>https://orcid.org/0000-0002-1966-3408</orcidid><orcidid>https://orcid.org/0000-0003-4885-5537</orcidid><orcidid>https://orcid.org/0000-0001-8550-9495</orcidid><orcidid>https://orcid.org/0000-0002-7107-8468</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_10063946 |
source | IEEE Electronic Library (IEL) |
subjects | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> ^{57}</tex-math> </inline-formula>Fe Absorbers Arrays Conductivity Electrical resistance measurement Electroplating Elementary particles Gold Iron Microcalorimeters Micrometers Monochromatic axion Pixels Residual resistivity Resistance Resistivity ratio Solar axions Straps Temperature measurement TES Thermal conductivity Thickness |
title | Fabrication of a 64-Pixel TES Microcalorimeter Array With Iron Absorbers Uniquely Designed for 14.4-KeV Solar Axion Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%2064-Pixel%20TES%20Microcalorimeter%20Array%20With%20Iron%20Absorbers%20Uniquely%20Designed%20for%2014.4-KeV%20Solar%20Axion%20Search&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yagi,%20Yuta&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3254488&rft_dat=%3Cproquest_RIE%3E2793209200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793209200&rft_id=info:pmid/&rft_ieee_id=10063946&rfr_iscdi=true |